
Lecture Notes on
Basic Optimizations

15-411: Compiler Design
André Platzer

Lecture 14

1 Introduction

Several optimizations are easier to perform on SSA form, because SSA
needs less analysis. Some optimizations can even be built into SSA con-
struction. Advanced optimizations need advanced static analysis techniques
on IR trees and SSA. In these lecture notes, we only deal with the SSA case
formally and leave the extra effort for the non-SSA case informal.

Some of what is covered in these notes is explained in [App98, Chapters
17.2–17.3]. A canonical reference on optimizing compilers is the book by
[Muc97], which also contains a brief definition of SSA.

2 Constant Folding

The idea behind constant folding is simple but successful. Whenever there
is a subexpression that only involves constant operands then we precom-
pute the result of the arithmetic operation during compilation and just use
the result. That is, whenever we find a subexpression n1 � n2 for concrete
number constants n1, n2 and some operator �, we compute the numerical
result n of the expression n1 � n2 and use n instead. Let us say this subex-
pression occurs in an assignment x = n1 � n2, which, for clarity, we write
x← n1 � n2 here.

x← n1 � n2 n1 � n2 = n

x← n CF

For that, of course, we have to be careful with the arithmetical semantic of
the target language. That is especially for expressions that raise an overflow

LECTURE NOTES

L14.2 Basic Optimizations

or division by zero error. Large expressions with constant operands seldom
occur in source code. But around 85% of constant folding comes from code
generated by address arithmetic. Constant folding also becomes possible
after other optimizations have been performed like constant propagation.

More advanced constant folding proceeds across basic blocks and takes
SSA φ functions into account. For instance, if we have an expression in SSA
that, after constant propagation, is of the form n1 � φ(n2, n3) for some op-
erator � and numerical constants n1, n2, n3 then we can perform constant
folding across φ:

x← n1 � φ(n2, n3) n12 = n1 � n2 n13 = n1 � n3
x← φ(n12, n13)

CFφ

3 Inverse Operations

Another optimization is to delete inverse operations, e.g., for unary minus:

−(−a)

a Inv

Again, inverse operators seldom occur in source code but may still arise
after other optimizations have been used.

4 Common Subexpression Elimination (CSE)

The goal of common subexpression elimination (CSE) is to avoid repetitive
computation for subexpressions that occur repeatedly. Common subex-
pressions occur very frequently in address arithmetic or in generated source
code. Studies show, for instance, that 60% of all arithmetic is address arith-
metic in PL/1 programs. A source code expression a.x = a.x+1 for instance
yields intermediate code with duplicate address arithmetic

// compiled from a.x = a.x + 1
t1 = a + offsetx;
t2 = a + offsetx;

*t2 = *t1 + 1;

If two operations always yield the same result then they are semanti-
cally equivalent. In SSA, if two expressions e, e′ are syntactically identical
(i.e., the same operators and the same operands) then they are semantically

LECTURE NOTES

Basic Optimizations L14.3

equivalent. Beware, however, that this is not the case in other intermedi-
ate representations, where static analysis is still necessary to determine if
the same operands still hold the same values or may already hold different
ones. In SSA we get this information for free from the property that each
location is (statically) only assigned once. Thus, wherever it is available, it
holds the same value.

Consequently, in SSA form, for syntactically identical subexpressions
e, e′ we can remove the computation e′ and just store and use the result of
e if e dominates e′ (otherwise the value may not be available). We capture
this optimization by the following rule:

l′ : t← a� b
l : x← a� b
l′ ≥ l

l′ : t← a� b
l : x← t

CSE

In rule (CSE) we replace the operation x ← a � b at location l by x ←
t, provided we find the same expression a � b at another location l′ that
dominates l (written l′ ≥ l). We leave the operation l′ unchanged. Hence
there are multiple premises and multiple conclusions in rule (CSE).

Rule (CSE) is easy to implement on SSA as follows. For each subexpres-
sion e of the form a � b for some operator � at an SSA node k, we need to
find all SSA nodes k′ that have the subexpression e. The canonical way to
solve this is to maintain a hash table for all expressions and lookup each
expression e in it. If we are at node k′ with expression e and the hash table
tells us that expression e occurs at a node k and k dominates k′ then we
reuse the value of e from k at k′.

for each node k of the form a � b do
look up a � b in hash table
if node j found in hash table that dominates k then

use result from j instead of a � b in k
else

leave k as is and put a � b into hash table

Note that the effect of “use result of j” may depend on the choice of the SSA
intermediate representation. For arbitrary SSA representations, the value
of an arbitrary subexpression a� b may have to be stored into a variable at
the dominator j in order to even be accessible at k.

LECTURE NOTES

L14.4 Basic Optimizations

For an SSA representation that only allows one operation for each of
the instructions (within a basic block), this is simpler. That is, consider an
SSA representation where basic blocks only allows operations of the form
x = a � b for an operator � and variables (but not general expressions)
a and b, then only top-level common subexpressions need to be identified
and their values will already have been stored in a variable. To illustrate,
suppose we are looking at a basic block in which one of the instructions
is y7 = a � b for variables a, b then we only need to look for instructions
of the form x = a � b Thus, if x5 = a � b is one of the instructions in a
node j that dominates k, then all we need to do to “use result of j” at k is
to replace y7 = a � b in k by y7 = x5, which, in turn will be eliminated by
copy propagation or value numbering.

In order to explain what happens in n-operation SSA, we use the fol-
lowing rule

l′ : Υ(a� b)
l : Υ′(a� b)
l′ ≥ l

l′ : t← a� b; Υ(t)
l : Υ′(t)

CSEn

Υ(t) represents an operation context with a subterm argument t (and pos-
sibly others). And Υ(a� b) represents the same operation context but with
a� b instead of t. Similarly, Υ′(t) represents another operation context with
argument t.

The CSE algorithm can also be integrated into the SSA construction,
because the construction will yield all dominators of k before k (see SSA
lecture). Combining CSE with SSA construction also reduces the storage
complexity of the SSA graph. Finally, it helps using normalizing transfor-
mations like commutativity and distributivity before CSE.

For non-SSA form, we also have to be extra careful that the variables in
the subexpression must always still hold the same value. And we need to
store the subexpression in a temporary variable, when the other target may
possibly be overwritten.

5 Constant propagation

Constant propagation propagates constant values of expressions like x2 =
5 to all dominated occurrences of x2. That is we just substitute x2 = 5 into
all dominated occurrences of x2. We capture this by the following rule (in

LECTURE NOTES

Basic Optimizations L14.5

which 10, of course, could be any other number literal too)

l′ : t← 10
l : Υ(t)
l′ ≥ l

l′ : t← 10
l : Υ(10)

ConstProp

In non-SSA form, extra care needs to be taken that the value of x2 cannot
be different at the occurrence. Constant propagation is somewhat similar
to CSE where the operator � is just the constant operator (here 5) that does
not take any arguments. It is usually implemented either using the CSE
hash tables or implicitly during SSA construction.

For non-SSA we also need to be careful that no other definition of x2
may possibly reach the statement and that the x2 = 5 definition surely
reaches the statement without being overwritten (possibly maybe).

6 Copy propagation

Copy propagation propagates values of copies like x2 = y4 to all dominated
occurrences of x2. That is we just substitute x2 = y4 into all dominated
occurrences of x2. We capture this by the copy propagation rule in which y
is a simple variable

l′ : t← y
l : Υ(t)
l′ ≥ l

l′ : t← y
l : Υ(y)

CopyProp

In non-SSA form, extra care needs to be taken that the value of x2 cannot
be different at the occurrence. Constant propagation is somewhat similar
to CSE where the operator � is just the identity operator that only takes
one argument. It is usually implemented either using the CSE hash tables
or implicitly during SSA construction. The register coalescing optimization
during register allocation is a form of copy propagation.

For non-SSA we also need to be careful that no other definition of x2
may possibly reach the statement and that the x2 = y4 definition surely
reaches the statement without being overwritten (possibly maybe) and that
no definition of y4 may possibly reach the statement.

LECTURE NOTES

L14.6 Basic Optimizations

7 Normalization

Normalizing transformations do not optimize the program itself but help
subsequent optimizations find more syntactically identical expressions. They
use algebraic laws like associativity and distributivity. Their use is gener-
ally restricted by definitions of the evaluation order (for Java), by the ex-
ception order (Java, Eiffel), or by the limitations of floating-point arithmetic
(which is neither associative nor distributive).

A simple normalization is to use commutativity a + b = b + a. But we
could use this equation in both directions? Which one do we use? If we use
it arbitrarily then we may still miss identical expressions. Instead, we fix
an order that will always normalize expressions. We first fix an order ≺ on
all operators. For instance, the order in which we constructed the various
expressions during SSA construction. And then we order commutative op-
erations so that the small operand (with respect to the order ≺) comes first:

a+ b b ≺ a
b+ a

C+
a ∗ b b ≺ a

b ∗ a
C∗

How do we use distributivity a ∗ (b + c) = (a ∗ b) + (a ∗ c)? Again we
need to decide in which direction we use it. This time we have to fix an
order on the operators. Let us fix ∗ ≺ + and use

a ∗ b+ a ∗ c ∗ ≺ +

a ∗ (b+ c)
D

But here we already have to think carefully about overflows. The operation
b+cmight overflow the data range even if a∗b+a∗c does not (e.g., for a = 0).
On an execution architecture where range overflows trigger exceptions or
the program depends on the processor flags being set, using distributivity
might be unsafe. When we strictly stick to modular arithmetic and do not
compile by relying on flags, however, distributivity is safe.

8 Reaching Expressions

The optimizations above have been presented for SSA intermediate repre-
sentations, where syntactical identity is the primary criterion for semantical
equivalence of terms and where def-use relations are represented explicitly
in the SSA representation. So we are done with those optimizations as far
as SSA is concerned.

LECTURE NOTES

Basic Optimizations L14.7

For non-SSA, this is not so easy, because we explicitly have to com-
pute all required information by static analysis. We have already seen how
reaching definitions can be computed in a previous lecture on dataflow
analysis.

Reaching expressions analysis is very similar to reaching definitions
analysis from the dataflow analysis lecture. The difference is essentially
that we do not care so much about the variable in which an expression has
been stored, but only if the expression could have been computed before
already. We say that the expression a � b at l : x ← a � b reaches a line l′ if
there is a path of control flow from l to l′ during which no part of a � b is
redefined. In logical language:

• reaches(l, a� b, l′) if the expression a� b at l reaches l′.

We only need two inference rules to defines this analysis. The first states
that an expression reaches any immediate successor. The second expresses
that we can propagate a reaching expression to all successors of a line l′ we
have already reached, unless this line also defines a part of the expression.

l : x← a� b
succ(l, l′)

reaches(l, a� b, l′)
RE1

reaches(l, a� b, l′)
succ(l′, l′′)
¬def(l′, a)
¬def(l′, b)
reaches(l, a� b, l′′)

RE2

Reaching expression analysis is only needed for a small subset of all
expressions during CSE. Thus, it is usually not performed exhaustively but
only selectively as needed for some expressions.

9 Available Expressions

Another analysis that is not obvious except for SSA representations is that
of available expressions. Reaching expressions capture the expressions by
static analysis that could possibly reach a node. But it is not certain that
they will, so we cannot always rely on the expression being available un-
der all circumstances. This is what available expressions analysis captures.
Which expressions are available at a point no matter what control path has
been taken before.

An expression a � b is available at a node k if, on every path from the
entry to k, the expression a � b is computed at least once and no subex-
pression of a � b has been redefined since the last occurrence of a � b on

LECTURE NOTES

L14.8 Basic Optimizations

the path. There is a crucial difference to all the dataflow analyses that we
have seen in class before. For available expressions we are not interested in
what information may be preserved from one location to another because at
least one control path provides it (may analysis). We are interested in what
information must be preserved on all control paths reaching the location so
that we can rely on it being present (must analysis).

Unfortunately, must analysis is a tricky match for logic rules, because
that keeps adding information, but we cannot (easily) talk about negations.
What we would have to say is something like

¬∃l′(succ(l0, l) ∧ ¬avail(l0, a� b))
avail(l, a� b) ?

This can still be expressed with logic rules, but it is much more complicated
to use them in the right way. We have to saturate appropriately before we
interpret negations.

Alternatively, we use a representation of available expression analysis
by dataflow equations. We follow the dataflow schema shown in Figure 1
using the definitions from Table 1.

· · ·
A•(l1) A•(l2)

A◦(l)

A•(l)

A◦(l) =
⋂

li 7→l

A•(li)

A•(l) = (A◦(l) \ kill (l)) ∪ gen(l)

A•(init) = c

Figure 1: Dataflow analysis schema for available expressions

10 Peephole Optimization

One of the simple-most optimizations is peephole optimization by McKee-
man from 1965 [McK65]. Peephole optimization is a postoptimization in
the backend after/during instruction selection has been performed. It is an
entirely local transformation. The basic idea is to move a sliding peephole,
usually of size 2, over the instructions and replace this pair of instructions
by cheaper instructions. After precomputing cheaper instruction sequences
for the set of all pairs of operations, a simple linear sweep through the in-
structions is used to optimize each pair. The matter is a little more involved

LECTURE NOTES

Basic Optimizations L14.9

Table 1: Dataflow analysis definitions for available expressions

Statement l gen(l) kill(l)

init A•(init) = ∅
x← a� b {a� b} \ kill(l) {e : e contains x}
x← ∗a {∗a} \ kill(l) {e : e contains x}
∗a← b ∅ {∗z : for all z}
goto l′ ∅ ∅
if a > b goto l′ ∅ ∅
l′ : ∅ ∅
x← f(p1, . . . , pn) ∅ {e : e contains x or any ∗z}

in the case of conditional jumps, where both possible target locations need
to be considered. Peephole optimization can be quite useful for CISC archi-
tectures to glue code coming originally from independent AST expressions
or to use fancy address modes. For instance, there are address modes that
combine

a[i]; i+ + a[i+ +]

Typical peephole optimizations include
store R, a; load a, R store R, a superfluous load
imul 2, R ashl 2,R multiplication by constant
iadd x,R; comp 0,R iadd x, R superfluous comparisons
if b then x:=y t:=b; x:=(t) y IA-64 predicated assignment

The major complication with peephole optimization is its mutual de-
pendency with other instruction selection optimizations like pipeline opti-
mization. Peephole optimization should be done before instruction selec-
tion for pipeline optimization but it cannot be done without instructions
having been selected. Other than that, it can lead to globally suboptimal
choices, because it is a local optimization. The fact that it is an entirely local
transformation, however, makes it easy to implement. Its limit is that it has
only a very narrow and local view of the program.

Postoptimizations can be fairly crucial. A strong set of postoptimiza-
tions can in fact lead to a lot more than 10% performance improvement. A
few compilers only use postoptimizations (e.g., lcc). Unfortunately, postop-
timizations are often quite processor dependent and not very systematic.

LECTURE NOTES

L14.10 Basic Optimizations

11 Summary

There is a very large number of optimization techniques for compiler de-
sign (more than 20 standard techniques, not counting special purpose op-
timizations). One might think that the fastest code would result from just
using all of these optimizations. That is not the case, because an optimiza-
tion that takes a long time to perform, but only has marginal effect on the
execution speed is hardly worth the effort. Also one optimization tech-
nique may undo the effects achieved by another one. Unfortunately, it is a
largely open problem which optimizations to use and in which order.

Several optimizations also achieve quite similar effect and their com-
bination is not better than the parts. Except for cache optimization and
strength reduction, which can have significant impact on numerical pro-
grams, a rule of thumb for arbitrary programming languages is that the
first optimization yields 15%, all others less than 5%. For programming
languages like C0 that give very structured guarantees (e.g., no strange
side effects everywhere), this can be improved. For numerical programs,
strength reduction has an impact of more than a factor of 2 and cache opti-
mization some factor of 2 to 5.

Reasonably strong optimizing compilers can already be achieved with
a small selection of optimization techniques, e.g., SSA, strength reduction,
common subexpression elimination (CSE), partial redundancy elimination
(PRE, to be discussed later).

Quiz

1. For every order of the optimizations you have seen so far, give an
example that gets optimized to suboptimal code or explain why that
does not happen.

2. For each basic optimization, give an example where the optimization
makes the code run slower than unoptimized or explain why that
does not happen.

3. Are there normalizing transformations on memory operations?

4. Should constant propagation, copy propagation, and CSE be imple-
mented separately or together?

5. Should CSE be implemented separately or during SSA construction?

LECTURE NOTES

Basic Optimizations L14.11

6. Is there a dataflow analysis that is more complicated for the basic
optimizations on nonSSA than the corresponding dataflow analysis
that you need to do during SSA to get the basic optimizations for
free?

7. Should a compiler do postoptimizations? Or would it be a better de-
sign if it didn’t?

8. Does a compiler have to worry about CISC and similar phenomena
usually done in peephole optimization? Should it?

References

[App98] Andrew W. Appel. Modern Compiler Implementation in ML. Cam-
bridge University Press, Cambridge, England, 1998.

[McK65] William M. McKeeman. Peephole optimization. Commun. ACM,
8(7):443–444, 1965.

[Muc97] S. S. Muchnick. Advanced Compiler Design and Implementation.
Morgan Kaufmann, 1997.

LECTURE NOTES

	Introduction
	Constant Folding
	Inverse Operations
	Common Subexpression Elimination (CSE)
	Constant propagation
	Copy propagation
	Normalization
	Reaching Expressions
	Available Expressions
	Peephole Optimization
	Summary

