André Platzer

aplatzer@cs.cmu.edu
Carnegie Mellon University, Pittsburgh, PA

© Motivation

© Train Control
@ Separation Principle
@ Parametric ETCS
© Parametric European Train Control System
e Controllability
@ Reactivity
@ Refined Control
@ Safety
@ Liveness
@ Proving ETCS in KeYmaera
Architecture
KeYmaera Problem Input
KeYmaera Rule Base
Real Arithmetic, Computer Algebra and Automation
Experiments

© Motivation

Hybrid System
@ Continuous evolutions
(differential equations)

@ Discrete jumps
(control decisions)

a
2 3.0,
25

15

z

PN W b g o

-1 1 0.5
2 '

ETCS objectives:
@ Collision free
@ Maximise throughput & velocity (300 km/h)
© 2.1 10° passengers/day

----- T :.‘.\.___.\ Vv t

RBC

far ST neg SB cor MA

continuous evolution along differential equations + discrete change

@ Parameters have nonlinear influence

@ Handle SB as free symbolic parameter? MA L

@ Challenge: verification (falsifying is “easy”)
@ Which constraints for SB?

----- T :.‘.\.___.\ Vv t

¥Ym 4SB “train always safe”

system = (cor;drive)*
(Pm—-z<SB;a:=—b)U(’Tm—2z> 5B;a:=A)

drive = 7:=0;(Z =v,vV =a,7 =1Av>0AT<¢)

cor

system = (cor;drive)*
cor = (tTm—z<5SB;a:=—b)U(Tm—2z>S5B;a:=A)

drive = 7:=0;(Z =v,vV =a,7 =1Av>0AT<¢)

© Train Control
@ Separation Principle
@ Parametric ETCS

m.e m.e 1n.e
e Vectorial MA m = (d, e, r):

@ Beyond point m.e train not faster than m.d.

@ Train should try not to keep recommended speed m.r

If each train stays within its MA and, at any time, MAs issued by the RBC
form a disjoint partitioning of the track, then trains can never collide.

RBC

far ST neg SB cor MA

If each train stays within its MA and, at any time, MAs issued by the RBC
form a disjoint partitioning of the track, then trains can never collide.

If each train stays within its MA and, at any time, MAs issued by the RBC
form a disjoint partitioning of the track, then trains can never collide.

@ To simplify notation, assume trains are points.

If each train stays within its MA and, at any time, MAs issued by the RBC
form a disjoint partitioning of the track, then trains can never collide.

@ To simplify notation, assume trains are points.

@ Consider any point in time (.

If each train stays within its MA and, at any time, MAs issued by the RBC
form a disjoint partitioning of the track, then trains can never collide.

@ To simplify notation, assume trains are points.

@ Consider any point in time (.

@ For ne N, let z, ..., z, be positions of all the trains 1 to n at (.

If each train stays within its MA and, at any time, MAs issued by the RBC
form a disjoint partitioning of the track, then trains can never collide.

@ To simplify notation, assume trains are points.

@ Consider any point in time (.
@ For ne N, let z, ..., z, be positions of all the trains 1 to n at (.

@ Let M; be the MA-range, i.e., the set of positions on the track for
which train / has currently been issued MA.

If each train stays within its MA and, at any time, MAs issued by the RBC
form a disjoint partitioning of the track, then trains can never collide.

@ To simplify notation, assume trains are points.

@ Consider any point in time (.
@ For ne N, let z, ..., z, be positions of all the trains 1 to n at (.

@ Let M; be the MA-range, i.e., the set of positions on the track for
which train / has currently been issued MA.

@ Suppose there was a collision at time (.

If each train stays within its MA and, at any time, MAs issued by the RBC
form a disjoint partitioning of the track, then trains can never collide.

@ To simplify notation, assume trains are points.

@ Consider any point in time (.
@ For ne N, let z, ..., z, be positions of all the trains 1 to n at (.

@ Let M; be the MA-range, i.e., the set of positions on the track for
which train / has currently been issued MA.

@ Suppose there was a collision at time (.

@ Then z; = z; at ¢ for some /,j € N.

If each train stays within its MA and, at any time, MAs issued by the RBC
form a disjoint partitioning of the track, then trains can never collide.

@ To simplify notation, assume trains are points.

@ Consider any point in time (.
@ For ne N, let z, ..., z, be positions of all the trains 1 to n at (.

@ Let M; be the MA-range, i.e., the set of positions on the track for
which train / has currently been issued MA.

Suppose there was a collision at time (.

Then z; = z; at ¢ for some /,j € N.
However, by assumption, z; € M; and z; € M; at ¢, thus M; N M; # 0,

If each train stays within its MA and, at any time, MAs issued by the RBC
form a disjoint partitioning of the track, then trains can never collide.

@ To simplify notation, assume trains are points.

@ Consider any point in time (.
@ For ne N, let z, ..., z, be positions of all the trains 1 to n at (.

@ Let M; be the MA-range, i.e., the set of positions on the track for
which train / has currently been issued MA.

@ Suppose there was a collision at time (.
@ Then z; = z; at ¢ for some /,j € N.
@ However, by assumption, z € M; and z; € M; at ¢, thus M; N M; # 0,

@ This contradicts the assumption of disjoint MA.

Train 7: RBC + MA:
@ 7.v Position @ m.e End of Authority
@ 7.v Speed @ m.d Speed limit
@ 7.a Acceleration @ m.r Recommended speed
@ (t model time) @ rbc.message Channel
Parameters:

SB Start Braking

ST Start Talking

b Braking power/deceleration
A Maximum acceleration

€ Maximum cycle time

A Maximum expected
communication delay

ETCSsye; : (trainU rbc)*

train
spd

atp
drive
rbc

. spd; atp; drive

(?Prv<mr;, r.ai=% 7—b<T1.a<A)
UQPrv>mr; ta:=x;, 7—b<1.a<0)

:if(m.e — 7.p < SBV rbc.message = emergency) T.a := —b
t:=0; (r.p=1v, 7V =18t =1ATV>0At<¢)
. (rbc.message := emergency) U (m:=x; ?m.r > 0)

ETCSsye; : (trainU rbc)*

train
spd

atp
drive
rbc

. spd; atp; drive

(?Prv<mr;, r.ai=% 7—b<T1.a<A)
UQPrv>mr; ta:=x;, 7—b<1.a<0)

:if(m.e — 7.p < SBV rbc.message = emergency) T.a := —b
t:=0; (r.p=1v, 7V =18t =1ATV>0At<¢)
. (rbc.message := emergency) U (m:=x; ?m.r > 0)

Verify safety?

ETCSsye; : (trainU rbc)*

train
spd

atp
drive
rbc

. spd; atp; drive

(?Prv<mr;, r.ai=% 7—b<T1.a<A)
UQPrv>mr; ta:=x;, 7—b<1.a<0)

:if(m.e — 7.p < SBV rbc.message = emergency) T.a := —b
t:=0; (r.p=1v, 7V =18t =1ATV>0At<¢)
. (rbc.message := emergency) U (m:=x; ?m.r > 0)

Verify safety?

[ETCSSke/](T.p >m.e - 1.v < md)

ETCSsye; : (trainU rbc)*

train . spd; atp; drive
spd D (Prv<mur;, raai=x 7—b<T1.a<A)

UQPrv>mr; ta:=x;, 7—b<1.a<0)
atp :if(m.e — 7.p < SBV rbc.message = emergency) T.a := —b
drive t:=0; (r.p=1v, 7V =18t =1ATV>0At<¢)
rbc : (rbc.message := emergency) U (m:=x%; m.r > 0)

Verify safety?

[ETCSSke/](T.p >m.e - 1.v < md)

Lots of counterexamples!

© Controllability discovery: Start with uncontrolled system dynamics.
Apply structural dZ decomposition until FOL-formula is obtained
revealing controllable state region, which specifies for which
parameter combinations the system dynamics can be controlled safely
by any control law.

© Controllability discovery: Start with uncontrolled system dynamics.
Apply structural dZ decomposition until FOL-formula is obtained
revealing controllable state region, which specifies for which
parameter combinations the system dynamics can be controlled safely
by any control law.

@ Control refinement: Successively add partial control laws to the
system while leaving its decision parameters (like SB or m) free.
Apply dC decomposition to discover parametric constraints which
maintain controllability under these control laws.

© Controllability discovery: Start with uncontrolled system dynamics.
Apply structural dZ decomposition until FOL-formula is obtained
revealing controllable state region, which specifies for which
parameter combinations the system dynamics can be controlled safely
by any control law.

@ Control refinement: Successively add partial control laws to the
system while leaving its decision parameters (like SB or m) free.
Apply dC decomposition to discover parametric constraints which
maintain controllability under these control laws.

© Safety convergence: Repeat step 2 until resulting system proven safe.

© Controllability discovery: Start with uncontrolled system dynamics.
Apply structural dZ decomposition until FOL-formula is obtained
revealing controllable state region, which specifies for which
parameter combinations the system dynamics can be controlled safely
by any control law.

@ Control refinement: Successively add partial control laws to the
system while leaving its decision parameters (like SB or m) free.
Apply dC decomposition to discover parametric constraints which
maintain controllability under these control laws.

© Safety convergence: Repeat step 2 until resulting system proven safe.

© Liveness check: Prove that discovered parametric constraints do not
over-constrain system inconsistently by showing that it remains live.

© Parametric European Train Control System
@ Controllability
@ Reactivity
@ Refined Control
@ Safety
@ Liveness

T.V

I\ng < 2b(m.e — 7.p)
d o TP

m.
m.e

[r.p) =1v,7v = —bAT.v>0](1.p > me— 7.v <m.d)
=C = v =m.d*’< 2b(m.e — 7.p)

m.d>0Ab>0— [mg:=m; rbc (
M = mo.d2 —m.d’< 2b(m.e —mg.e) Amg.d >0Am.d >0«

7 (((m=mp)C) — c))

T.V
m.d \ \
T.p ~ SB — m.e

~_

(‘v’m.eVT.p (me—7p>SBAC —

[r.a:=A; drive] C))

7.v2 —m.d? A A
=SB>_" " = g2
> b +<b+1>< 5+57’.v>

ETCS: (trainU rbc)*

train :

spd

atp

rbc

spd, atp; drive
(Prv<mr;, rai=x ?7—b<T1.a<A)
U(?r.v >m.r; 7.a:=x%; 70> 71.a> —b)

: SB = —T'Vzgg“'dz + (% +1) (éaz +eTv);
. if(m.e — 7.p < SBV rbc.message = emergency) T.a .= —b
drive :

t:=0; (r.p/=1v,7vV =1t =1ATVv>0ALt<¢)
(rbc.message := emergency)
U (mo :=m;m = x;

m.r >0Am.d >0Amg.d? —m.d? < 2b(m.e — mg.e))

ETCS: (trainU rbc)*

train :

spd

atp

rbc

spd, atp; drive
(Prv<mr;, rai=x ?7—b<T1.a<A)
U(?r.v >m.r; 7.a:=x%; 70> 71.a> —b)

: SB = —T'Vzgg“'dz + (% +1) (éez +eTv);
. if(m.e — 7.p < SBV rbc.message = emergency) T.a .= —b
drive :

t:=0; (r.p/=1v,7vV =1t =1ATVv>0ALt<¢)
(rbc.message := emergency)
U (mo :=m;m = x;

m.r >0Am.d >0Amg.d? —m.d? < 2b(m.e — mg.e))

7.v? =m.d?> < 2b(m.e — 7.p) — [ETCSayg](T.p > m.e — 1.v < m.d)

C—
[ETCS|(T.p > m.e — 7.v < m.d)

C [N\ A

— =D by

I
(]I 7 777777777777 777

[I

Tv>0Ae>0 — VP(ETCS)T.p> P
~ AndréPlatzer (CMU) 15-819/09: Train Control Verification 15 /30

@ Proving ETCS in KeYmaera

Architecture

KeYmaera Problem Input

KeYmaera Rule Base

Real Arithmetic, Computer Algebra and Automation
Experiments

Rule
base

Input File

Prover
File View Proof Qptions Tools
>

| Proof Strategy | Rules | Hybrid surategy |
Proof | Goals | User Constraint_|
Proor
[Proof Tree
& @ Invariant Initially Valid
§ 10:Eliminate Universal Quanti|
B [Use Case
§ 13:Eliminate Universal Quantif|
= ol Body Preserves [nvariant
E®>0&h=0
& 42:Eliminate Universal Qua
EEnott>0&h=0

£ Run Simpiity| |- Prune Proot) Reuse

(00}

Inner Node

{h' =v, v =-g, t =1, h> 0}

AL
iF(t>0&h=0)
then

o e #)
a1 i 0l | |« e

K strategy: Applied 44 rules @.1 seo, closed 4 goals, 0 re

Solvers

Mathematica
QEPCAD

Rule
base

Prover
File View Proof Qptions Tools

>

Hybrid Strategy

Froorsusegy | ues |
Poor | Gous | User Consuame |

Proor
[Proof Tree
& @ Invariant Initially Valid
§ 10:Eliminate Universal Quanti|
B [Use Case
§ 13:Eliminate Universal Quantif|
= ol Body Preserves [nvariant
E®>0&h=0
& 42:Eliminate Universal Qua
EEnott>0&h=0

£ Run Simpiity| |- Prune Proot) Reuse

(00}

Inner Node

{h' =v, v =-g, t =1, h> 0}

AL
iF(t>0&h=0)
then

o e #)
a1 i 0l | |« e

Input File

K strategy: Applied 44 rules @.1 seo, closed 4 goals, 0 re

Solvers

Mathematica
QEPCAD

\functions {
R ep; R b; R A;
}
\problem {
\[RSB, a, v, z, t, m; \] (
(v'2 <= 2%bx(m-z) & b > 0 & A>=0)
—>
\(
SB := (v"2)/(2%b) + ((A/b)+1)*((A/2)*ep"2 + ep*v);
((?m — z <= SB; a:= —b)
++ (?m — z >= SB; a:=A));
t:=0;
{z'=v, v =a, t'=1, (v>=0& t <= ep)}
) *
\] (z <=m)

—

\functions { R b; R A; R ep; }
\problem {
\[R r,SB,mo,t,a,v,z,m,d,do,drive ,brake, state;drive:=(
(v'2—=d"2 <= 2xbx(m-z) & d>=0 & b>0 & A>=0 & ep>=0)
—> \[((
(do:=d; mo:=m; m:=x; d:=x; r:=x;
?7d>=0 & do"2—-d"2<=2xb*(m-mo) & r>=0)

++ (state := brake)

) ++ (
((?7v<=r; a:=x; 7a>=b & a <= A)
+H (?v>=r; a:=x; 7a <0 & a >= -b));
SB := (v"2-d"2)/(2+b) + (A/b+1)%(A/2xep"24+epxv);
if (mz <= SB | state=brake) then a:= b fi;
(t:=0; {z'=v,v'=a,t'=1, (v>=0 & t<=ep)})

)

)*x\] (z>=m —> v<=d))
—

Rule
base

Input File

Prover
File View Proof Qptions Tools
>

| Proof Strategy | Rules | Hybrid surategy |
Proof | Goals | User Constraint_|
Proor
[Proof Tree
& @ Invariant Initially Valid
§ 10:Eliminate Universal Quanti|
B [Use Case
§ 13:Eliminate Universal Quantif|
= ol Body Preserves [nvariant
E®>0&h=0
& 42:Eliminate Universal Qua
EEnott>0&h=0

£ Run Simpiity| |- Prune Proot) Reuse

(00}

Inner Node

{h' =v, v =-g, t =1, h> 0}

AL
iF(t>0&h=0)
then

o e #)
a1 i 0l | |« e

K strategy: Applied 44 rules @.1 seo, closed 4 goals, 0 re

Solvers

Mathematica
QEPCAD

File View Proof Options Tools

> [runsimputy] (= prune proot 3 ewse []
== Inner Node
| Proof Strateqy | Rules | Hybrid Strategy | | _.

oot [Goals | User Consrane | | T i

Proof £ 1
oot res %

& @ Invariant Initially Valid . - :
& 10 Elminate Universal Quan T V=TGN =R WEE=10}
& 8 Use Case Y
§ 13:Eliminate Universal Quantif|
& (8 Body Preserves Invariant 50 g
E®>0&h=0
@ 42:Eliminate Universal Qua
Wnott>08&h=0
& 44:Eliminate Universal Qua
il 0 v

iF(t>0&h=0)
then

i
Mwr2ew2tg H-h
i,

K strategy: Applied 44 rules (.1 seo, closed 4 goals, 0 remaining

Solvers

QEPCAD

Input File

Rule
base

)

Inv - [ETCS] /nv]
|

[lnit - [ETCSY)z < m]

)

Inv - [ETCS] /nv]
|

[lnit - [ETCSY)z < m]

Example
x' = f(x
VE > 0 [x = y(1)] 6 @—()@
oL eeolae b
x = y(t)
H[Z=v, v ==blz<m

Example
x' = f(x)
Vit >0 [x:=y(t)] ¢
[x' = ()] ¢ IREE T ¢
x = y(t)
L FVE>0[z:=—3bt2+tv+2Z]z<m
o H[Z=v, v ==blz<m

Example
x' = f(x
VE > 0 [x = y(1)] 6 @—()@
o = 70T T

S EVE>0(—3bt2 + tv+2z < m)
L FVt>0[z:=—3bt2+tv+2Z]z<m

o H[Z=v, v ==blz<m

MN-¢,A Ty A
Fr=ony, A

and_right {

\find (==> b & c)
\replacewith(==> b);
\replacewith(==> c¢)
\heuristics(split , beta)

b

M-lelg,A TH[5lg, A
M- [aUgle, A

box_choice_right {

\find (==> \[#d| ++ #dI12 \](post))
\replacewith(==> \[#dI\](post));
\replacewith(==> \[#dI2\](post))
\heuristics(simplify_prog)

b

M= (S(t)o, A
M- =61,..,x,="0n0,A

ODESolve_right {

\find (==> \[#simpleode \](post))
\replacewith(==> #ODESolve(\[# simpleode \](post)))
\heuristics(diff_solve ,diff_rule)

\displayname " ODESolve"

b

M= (S(t)o, A
M- =61,..,x,="0n0,A

ODESolve_right {

\find (==> \[#simpleode \](post))
\replacewith(==> #ODESolve(\[# simpleode \](post)))
\heuristics(diff_solve ,diff_rule)

\displayname "ODESolve”

b

Using meta-operator #0DESolve implemented in Java

P(X) P(s(X1, .., Xn))
Vx ¢(x) Ix d(x) F

all_left {

\find (\forall u; b ==>)
\replacewith ({\subst u; q}(b) ==>)
\heuristics (gamma)

i
ex_left {

\find (\exists u; b ==>)

\varcond (\new(sk, \dependingOn(b)))
\replacewith ({\subst u; sk}b ==>)
\heuristics(delta)

b
~ AndréPlatzer (CMU) 15-819/09: Train Control Verification =~ 25/30

F QE(VX (¢(X) F W(X)))
d(s(X1,..,Xn)) F W(s(X1,..,Xn))

FQEEX A (i F V)
O FV; .. B,V

F QE(VX (¢(X) F W(X)))
d(s(X1,..,Xn)) F W(s(X1,..,Xn))

F QE(EX A;(®i +V)))
OV S OJ s 8

Using built-in rule implemented in Java

Pr

File View Proof Options Tools

> e e rot] [Bhreuse] 2 [mIm]

Inner Node

| Proor suategy | e | briasuateay
Poof | _Goals | _user Consurame_|

oot

{8 Proof Tree

& @ Invariant Initially Valid

§ 10:Eliminate Universal Quanti|

V=g, t =1, h=0}

Use Case \ﬂv'f(t >08&h=0)
§ 13:Eliminate Universal Quantif e
5 88 Body Preserves Invariant S 0H
EEt>0&h=0 cdc<l;
a liminate Universal Quar (e *v);

@@lnot t>0&h=0
& 44:Eliminate Universal Qua
il i -0

K strategy: Applied 44 rules (.1 seo, closed 4 goals, 0 remaining

Input File

QEPCAD

Rule
base

Prover
File View Proof Qptions Tools
>

(00}

£ Run Simpiity| |- Prune Proot) Reuse

Inner Node
Hybrid Strategy

Froorsusegy | ues | :
Poor | Gous | User Consuame | |]

Proof

Proof Tree N
& ® Invariant Initially Valid \

B [Use Case

& B Body Preserves Invariant B0

iGN

iF(t>0&h=0)
& 13:Eliminate Universal Quantif then

E®>0&h=0

@ 42:Eliminate Universal Qua
EEnot t>0&h =
& 44:Eliminate Universal Qua

Al

] | D

Input File

Rule
base

K strategy: Applied 44 rules @.1 seo, closed 4 goals, 0 re

Quantifier
eliminiation

Solvers

Mathematica
QEPCAD

)

Inv - [ETCS] /nv]
|

[lnit - [ETCSY)z < m]

[m—zgss] [m—z>53] [m—zgss] [m—z>SB]

N~ -
Example

m—z>(2+1) (z-:v-l-éz-:z)—l-%/\OSaSA/\OSvgvdes
AvZ —d? <2b(m—2z)Ad>0Ae>0Ab>0AA>0

l_

Vt>0((V0O<t<t(at+v>0At<¢g))

— (at +v)?2 —d? <2b(m— (Yat +tv+2z))Aat+v>0Ad >0)

;)\L ‘l‘) 1 —)

[lnit - [ETCSY)z < m]

@ Quantifier elimination is
doubly exponential
@ Choice conflict:
@ Apply quantifier

elimination
@ Split using
FA FB
FAAB

ETCS essentials 0 47.8
1 46 6.6 8.8
ETCS complete 0 163 2045.2 00
1 168 23.3 0
ETCS reactivity 0 49 76.2 0
ETCS liveness 3 112 17.6 16.0
Aircraft TRM 0 94 10.9 o0
1 94 1.2 1.2
TRM 3 Planes 0 187 171.8 0
1 187 21.2 00
TRM 4 Planes 0 255 704.3 (9]
1 255 170 00
Water tank 1 375 2.0 2.0

0o = more than five hours

ETCS essentials 0 46
1 46
ETCS complete 0 163
1 168
ETCS reactivity 0 49
ETCS liveness 3 112
Aircraft TRM 0 94
1 94
TRM 3 Planes 0 187
1 187
TRM 4 Planes 0 255
1 255
Water tank 1 375

47.8 00
6.6 8.8
2045.2 (9]
23.3 0
76.2 00
17.6 16.0
10.9 00
1.2 1.2
171.8 00
21.2 o)
704.3 00
170 00
2.0 2.0

0o = more than five hours

A. Platzer.
Differential dynamic logic for hybrid systems.
J. Autom. Reasoning, 41(2):143-189, 2008.

A. Platzer and J.-D. Quesel.

KeYmaera: A hybrid theorem prover for hybrid systems.

In A. Armando, P. Baumgartner, and G. Dowek, editors, IJCAR,
volume 5195 of LNCS, pages 171-178. Springer, 2008.

A. Platzer and J.-D. Quesel.
Logical verification and systematic parametric analysis in train control.

In M. Egerstedt and B. Mishra, editors, HSCC, volume 4981 of LNCS,
pages 646-649. Springer, 2008.

	Motivation
	Train Control
	Separation Principle
	Parametric ETCS

	Parametric European Train Control System
	Controllability
	Reactivity
	Refined Control
	Safety
	Liveness

	Proving ETCS in KeYmaera
	Architecture
	KeYmaera Problem Input
	KeYmaera Rule Base
	Real Arithmetic, Computer Algebra and Automation
	Experiments

