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© Motivation



Hybrid System
@ Continuous evolutions
(differential equations)

@ Discrete jumps
(control decisions)
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ETCS objectives:
@ Collision free
@ Maximise throughput & velocity (300 km/h)
© 2.1 10° passengers/day
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RBC

far ST neg SB cor MA

continuous evolution along differential equations + discrete change

@ Parameters have nonlinear influence

@ Handle SB as free symbolic parameter? MA L

@ Challenge: verification (falsifying is “easy”)
@ Which constraints for SB?

----- T :.‘.\.___.\ Vv t

¥Ym 4SB “train always safe”



system = (cor;drive)*
(Pm—-z<SB;a:=—b)U(’Tm—2z> 5B;a:=A)

drive = 7:=0;(Z =v,vV =a,7 =1Av>0AT<¢)

cor



system = (cor;drive)*
cor = (tTm—z<5SB;a:=—b)U(Tm—2z>S5B;a:=A)

drive = 7:=0;(Z =v,vV =a,7 =1Av>0AT<¢)




© Train Control
@ Separation Principle
@ Parametric ETCS



m.e m.e 1n.e
e Vectorial MA m = (d, e, r):

@ Beyond point m.e train not faster than m.d.

@ Train should try not to keep recommended speed m.r



If each train stays within its MA and, at any time, MAs issued by the RBC
form a disjoint partitioning of the track, then trains can never collide.
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If each train stays within its MA and, at any time, MAs issued by the RBC
form a disjoint partitioning of the track, then trains can never collide.

@ To simplify notation, assume trains are points.

@ Consider any point in time (.
@ For ne N, let z, ..., z, be positions of all the trains 1 to n at (.

@ Let M; be the MA-range, i.e., the set of positions on the track for
which train / has currently been issued MA.

@ Suppose there was a collision at time (.
@ Then z; = z; at ¢ for some /,j € N.
@ However, by assumption, z € M; and z; € M; at ¢, thus M; N M; # 0,

@ This contradicts the assumption of disjoint MA.



Train 7: RBC + MA:
@ 7.v Position @ m.e End of Authority
@ 7.v Speed @ m.d Speed limit
@ 7.a Acceleration @ m.r Recommended speed
@ (t model time) @ rbc.message Channel
Parameters:

SB Start Braking

ST Start Talking

b Braking power/deceleration
A Maximum acceleration

€ Maximum cycle time

A Maximum expected
communication delay



ETCSsye; : (trainU rbc)*

train
spd

atp
drive
rbc

. spd; atp; drive

(?Prv<mr;, r.ai=% 7—b<T1.a<A)
UQPrv>mr; ta:=x;, 7—b<1.a<0)

:if(m.e — 7.p < SBV rbc.message = emergency) T.a := —b
t:=0; (r.p=1v, 7V =18t =1ATV>0At<¢)
. (rbc.message := emergency) U (m:=x; ?m.r > 0)
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ETCSsye; : (trainU rbc)*

train
spd

atp
drive
rbc

. spd; atp; drive

(?Prv<mr;, r.ai=% 7—b<T1.a<A)
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ETCSsye; : (trainU rbc)*

train . spd; atp; drive
spd D (Prv<mur;, raai=x 7—b<T1.a<A)

UQPrv>mr; ta:=x;, 7—b<1.a<0)
atp :if(m.e — 7.p < SBV rbc.message = emergency) T.a := —b
drive t:=0; (r.p=1v, 7V =18t =1ATV>0At<¢)
rbc : (rbc.message := emergency) U (m:=x%; m.r > 0)

Verify safety?

[ETCSSke/](T.p >m.e - 1.v < md)

Lots of counterexamples!
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© Controllability discovery: Start with uncontrolled system dynamics.
Apply structural dZ decomposition until FOL-formula is obtained
revealing controllable state region, which specifies for which
parameter combinations the system dynamics can be controlled safely
by any control law.

@ Control refinement: Successively add partial control laws to the
system while leaving its decision parameters (like SB or m) free.
Apply dC decomposition to discover parametric constraints which
maintain controllability under these control laws.

© Safety convergence: Repeat step 2 until resulting system proven safe.

© Liveness check: Prove that discovered parametric constraints do not
over-constrain system inconsistently by showing that it remains live.



© Parametric European Train Control System
@ Controllability
@ Reactivity
@ Refined Control
@ Safety
@ Liveness
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ETCS: (trainU rbc)*

train :

spd

atp

rbc

spd, atp; drive
(Prv<mr;, rai=x ?7—b<T1.a<A)
U(?r.v >m.r; 7.a:=x%; 70> 71.a> —b)

: SB = —T'Vzgg“'dz + (% +1) (éaz +eTv);
. if(m.e — 7.p < SBV rbc.message = emergency) T.a .= —b
drive :

t:=0; (r.p/=1v,7vV =1t =1ATVv>0ALt<¢)
(rbc.message := emergency)
U (mo :=m;m = x;

m.r >0Am.d >0Amg.d? —m.d? < 2b(m.e — mg.e))



ETCS: (trainU rbc)*

train :

spd

atp

rbc

spd, atp; drive
(Prv<mr;, rai=x ?7—b<T1.a<A)
U(?r.v >m.r; 7.a:=x%; 70> 71.a> —b)

: SB = —T'Vzgg“'dz + (% +1) (éez +eTv);
. if(m.e — 7.p < SBV rbc.message = emergency) T.a .= —b
drive :

t:=0; (r.p/=1v,7vV =1t =1ATVv>0ALt<¢)
(rbc.message := emergency)
U (mo :=m;m = x;

m.r >0Am.d >0Amg.d? —m.d? < 2b(m.e — mg.e))

7.v? =m.d?> < 2b(m.e — 7.p) — [ETCSayg](T.p > m.e — 1.v < m.d)



C—
[ETCS|(T.p > m.e — 7.v < m.d)




C [N\ A

— =D by

I
(]I 7 777777777777 777

[ I

Tv>0Ae>0 — VP(ETCS)T.p> P
~ AndréPlatzer (CMU)  15-819/09: Train Control Verification 15 /30




@ Proving ETCS in KeYmaera

Architecture
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Experiments



Rule
base

Input File

Prover
File View Proof Qptions Tools
>

| Proof Strategy | Rules | Hybrid surategy |
Proof | Goals | User Constraint_|
Proor
[ Proof Tree
& @ Invariant Initially Valid
§ 10:Eliminate Universal Quanti|
B [ Use Case
§ 13:Eliminate Universal Quantif|
= ol Body Preserves [nvariant
E®>0&h=0
& 42:Eliminate Universal Qua
EEnott>0&h=0

£ Run Simpiity| |- Prune Proot ) Reuse

(00}

Inner Node

{h' =v, v =-g, t =1, h> 0}

AL
iF(t>0&h=0)
then

o e # )
a1 i 0l | |« e

K strategy: Applied 44 rules @.1 seo, closed 4 goals, 0 re

Solvers

Mathematica
QEPCAD




Rule
base

Prover
File View Proof Qptions Tools

>

Hybrid Strategy

Froorsusegy | ues |
Poor | Gous | User Consuame |

Proor
[ Proof Tree
& @ Invariant Initially Valid
§ 10:Eliminate Universal Quanti|
B [ Use Case
§ 13:Eliminate Universal Quantif|
= ol Body Preserves [nvariant
E®>0&h=0
& 42:Eliminate Universal Qua
EEnott>0&h=0

£ Run Simpiity| |- Prune Proot ) Reuse

(00}

Inner Node

{h' =v, v =-g, t =1, h> 0}

AL
iF(t>0&h=0)
then

o e # )
a1 i 0l | |« e

Input File

K strategy: Applied 44 rules @.1 seo, closed 4 goals, 0 re

Solvers

Mathematica
QEPCAD




\functions {
R ep; R b; R A;
}
\problem {
\[ RSB, a, v, z, t, m; \] (
( v'2 <= 2%bx(m-z) & b > 0 & A>=0)
—>
\(
SB := (v"2)/(2%b) + ((A/b)+1)*((A/2)*ep"2 + ep*v);
((?m — z <= SB; a:= —b)
++ (?m — z >= SB; a:=A));
t:=0;
{z'=v, v =a, t'=1, (v>=0& t <= ep)}
) *
\] (z <=m)

—



\functions { R b; R A; R ep; }
\problem {
\[ R r,SB,mo,t,a,v,z,m,d,do,drive ,brake, state;drive:=(
(v'2—=d"2 <= 2xbx(m-z) & d>=0 & b>0 & A>=0 & ep>=0)
—> \[((
(do:=d; mo:=m; m:=x; d:=x; r:=x;
?7d>=0 & do"2—-d"2<=2xb*(m-mo) & r>=0)

++ (state := brake)

) ++ (
((?7v<=r; a:=x; 7a>=b & a <= A)
+H (?v>=r; a:=x; 7a <0 & a >= -b));
SB := (v"2-d"2)/(2+b) + (A/b+1)%(A/2xep"24+epxv);
if (mz <= SB | state=brake) then a:= b fi;
(t:=0; {z'=v,v'=a,t'=1, (v>=0 & t<=ep)})

)

)*x\] (z>=m —> v<=d) )
—



Rule
base

Input File

Prover
File View Proof Qptions Tools
>

| Proof Strategy | Rules | Hybrid surategy |
Proof | Goals | User Constraint_|
Proor
[ Proof Tree
& @ Invariant Initially Valid
§ 10:Eliminate Universal Quanti|
B [ Use Case
§ 13:Eliminate Universal Quantif|
= ol Body Preserves [nvariant
E®>0&h=0
& 42:Eliminate Universal Qua
EEnott>0&h=0

£ Run Simpiity| |- Prune Proot ) Reuse

(00}

Inner Node

{h' =v, v =-g, t =1, h> 0}

AL
iF(t>0&h=0)
then

o e # )
a1 i 0l | |« e

K strategy: Applied 44 rules @.1 seo, closed 4 goals, 0 re

Solvers

Mathematica
QEPCAD




File View Proof Options Tools
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Example
x' = f(x)
Vit >0 [x:=y(t)] ¢
[x' = ()] ¢ IREE T ¢
x = y(t)
L FVE>0[z:=—3bt2+tv+2Z]z<m
o H[Z=v, v ==blz<m




Example
x' = f(x
VE > 0 [x = y(1)] 6 @—()@
o = 70T T

S EVE>0(—3bt2 + tv+2z < m)
L FVt>0[z:=—3bt2+tv+2Z]z<m

o H[Z=v, v ==blz<m




MN-¢,A Ty A
Fr=ony, A

and_right {

\find (==> b & c)
\replacewith(==> b);
\replacewith(==> c¢)
\heuristics(split , beta)

b



M-lelg,A TH[5lg, A
M- [aUgle, A

box_choice_right {

\find (==> \[ #d| ++ #dI12 \](post))
\replacewith(==> \[#dI\](post));
\replacewith(==> \[#dI2\]( post))
\heuristics(simplify_prog)

b



M= (S(t)o, A
M- =61,..,x,="0n0,A

ODESolve_right {

\find (==> \[ #simpleode \](post))
\replacewith(==> #ODESolve(\[# simpleode \]( post)))
\heuristics(diff_solve ,diff_rule)

\displayname " ODESolve"

b



M= (S(t)o, A
M- =61,..,x,="0n0,A

ODESolve_right {

\find (==> \[ #simpleode \](post))
\replacewith(==> #ODESolve(\[# simpleode \]( post)))
\heuristics(diff_solve ,diff_rule)

\displayname "ODESolve”

b

Using meta-operator #0DESolve implemented in Java



P(X) P(s(X1, .., Xn))
Vx ¢(x) Ix d(x) F

all_left {

\find (\forall u; b ==>)
\replacewith ({\subst u; q}(b) ==>)
\heuristics (gamma)

i
ex_left {

\find (\exists u; b ==>)

\varcond (\new(sk, \dependingOn(b)))
\replacewith ({\subst u; sk}b ==>)
\heuristics(delta)

b
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F QE(VX (¢(X) F W(X)))
d(s(X1,..,Xn)) F W(s(X1,..,Xn))

FQEEX A (i F V)
O FV; .. B,V




F QE(VX (¢(X) F W(X)))
d(s(X1,..,Xn)) F W(s(X1,..,Xn))

F QE(EX A;(®i +V)))
OV S OJ s 8

Using built-in rule implemented in Java
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[m—zgss] [m—z>53] [m—zgss] [m—z>SB]

N~ -
Example

m—z>(2+1) (z-:v-l-éz-:z)—l-%/\OSaSA/\OSvgvdes
AvZ —d? <2b(m—2z)Ad>0Ae>0Ab>0AA>0

l_
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— (at +v)?2 —d? <2b(m— (Yat +tv+2z))Aat+v>0Ad >0)

;)\L ‘l‘) 1 — )

[lnit - [ETCSY)z < m]




@ Quantifier elimination is
doubly exponential
@ Choice conflict:
@ Apply quantifier

elimination
@ Split using
FA FB
FAAB



ETCS essentials 0 47.8
1 46 6.6 8.8
ETCS complete 0 163  2045.2 00
1 168 23.3 0
ETCS reactivity 0 49 76.2 0
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ETCS essentials 0 46
1 46
ETCS complete 0 163
1 168
ETCS reactivity 0 49
ETCS liveness 3 112
Aircraft TRM 0 94
1 94
TRM 3 Planes 0 187
1 187
TRM 4 Planes 0 255
1 255
Water tank 1 375

47.8 00
6.6 8.8
2045.2 (9]
23.3 0
76.2 00
17.6 16.0
10.9 00
1.2 1.2
171.8 00
21.2 o)
704.3 00
170 00
2.0 2.0

0o = more than five hours
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