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Learning Objectives
Verified Models & Verified Runtime Validation

CT

M&C CPS

proof in a model vs. truth in reality
tracing assumptions
turning provers upside down
correct-by-construction
dynamic contracts
proofs for CPS implementations

models vs. reality
inevitable differences
model compliance
architectural design

tame CPS complexity
runtime validation
online monitor
prediction vs. run
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What Else Could Possibly Go Wrong?

Proposition (System Proved Safe)

A→ [(ctrl;plant)∗]S

All models are wrong but
some are useful. G. Box

Models Predictions need models!

S Right answer to wrong question.

A Proof, so can’t forget condition.
Except too picky to turn on.

ctrl Control model vs.
controller implementation
Abstraction helps scale!

plant Plant model vs.
real physics
Models are inevitable!

Challenge

Verification results about models
only apply if CPS fits to the model

 Verifiably correct runtime model validation
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Runtime Monitor for Runtime Validation of Model

Proposition (System Proved Safe)

A→ [(ctrl;plant)∗]S

Monitors must be correct

Monitor Verified runtime validation!

A Monitor easy if measurable.
Veto turns CPS off.

S Too late to monitor.
CPS already unsafe!

ctrl Monitor each control decision.
Veto overrides decision.

plant No source code for physics.
Observe and compare.
Veto triggers best fallback.
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ModelPlex: Verified Runtime Validation of Models

ModelPlex ensures that verification results about models
apply to CPS implementations

i−1 i i+1
Model α ctrl plant

...

model adequate? control safe? until next cycle?

turn
predict

Insights

Verification results about models transfer to CPS when
validating model compliance

Compliance with model is characterizable in logic

Compliance formula transformed by proof to monitor

Correct-by-construction verified runtime model validation
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Model Compliance

Is present CPS behavior included in the behavior of the model?

CPS observed through sensors

Model describes all possible behavior of CPS between states

observation observation observation

. . .

i−1 i i+1 . . .Model α Model α

⊆ ⊆

fits to

C
P

S
M

od
el

time

Detect non-compliance ASAP to initiate fallback actions while still safe

Challenge

Model describes behavior,
but at runtime we get sampled observations

 Transform model into observation-monitor
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Quantum’s Bouncing Ball Monitors

Proposition (Quantum can bounce around safely)

0≤ x ∧ x = H ∧ v = 0∧g > 0∧1≥ c ≥ 0→
[
(
{x ′ = v ,v ′ =−g&x ≥ 0}; (?x = 0;v :=−cv ∪?x 6= 0)

)∗
](0≤ x∧x ≤H)

Example (Controller Monitor)

(
x = 0∧ v+ =−cv ∨ x > 0∧ v+ = v

)
∧ x+ = x

Example (Plant Monitor)

2g(x+− x) = v2− (v+)2

∧ v+ ≤ v ∧ x ≥ 0∧ x+ ≥ 0

Example (Model Monitor)

x+ > 0∧2g(x+− x) = v2− (v+)2∧ v+ ≤ v ∧ x ≥ 0

∨x+ = 0∧ c22g(x+− x) = c2v2− (v+)2∧ v+ ≥−cv ∧ x ≥ 0

Takeaway

Monitors are subtle, in desperate need of correctness proof.
What proof implies a safe system if the monitors pass?
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Characterizing State Relations in Logic

When are two states linked through a run of model α?

i−1 i

a prior state
characterized by x

a posterior state
characterized by x+

Not initial state.
Model repeats. . .

dL proof A→ [α]S

Init i−1 ∈ [[A]] Safe i ∈ [[S]]

Model α

⊆

Offline

(i−1, i) ∈ [[α]]Semantical: reachability relation of α

m Lemma
(i−1, i) |= 〈α〉(x = x+)Logical dL:

exists a run of α to a
state where x = x+

m⇑
(i−1, i) |= F(x ,x+)Arithmetical:

dL proof

check at runtime (efficient)
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ModelPlex Model Monitor Correctness

0 i−1 i i+1
Model α Model α Model α

⊆ ⊆ ⊆

Init 0 |= A Check (i, i+1) |= 〈α〉x=x+

dL proof A→ [α∗]S

Safe i+1 |= S

Theorem (Model Monitor Correctness) (FMSD’16)
System safe as long as monitor satisfied.
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Correct-by-Construction Synthesis

dL proof calculus executes models symbolically

Model α

i−1 iprior state x posterior state x+Model α

climb
descend

proof attempt
〈α(x)〉(x = x+)

〈climb∪descend〉(x = x+)

〈climb∪descend〉P↔
〈climb〉P ∨〈descend〉P

∨
〈climb〉(x = x+) 〈descend〉(x = x+)

F1(x ,x+) F2(x ,x+)

F1(x ,x+)∨F2(x ,x+)Monitor:

The subgoals that cannot be proved express all the conditions on the
relations of variables imposed by the model prove at runtime

Model Monitor
Immediate detection of model violation

 Mitigates safety issues with safe fallback action
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Outline

Typical (ctrl;plant)∗ models can check earlier

i−1 i i+1
Model α ctrl plant

...

turn
predict

Controller Monitor
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Controller Monitor: Veto Early If Noncompliant

Model α

Offline

i

ν

i+1prior state x posterior state x+Model α

ctrl plant

Model Monitor

Controller Monitor before actuation
posterior state x+

(i,ν) ∈ [[ctrl]]Semantical: reachability relation of ctrl
m Theorem

(i,ν) |= 〈ctrl〉(x = x+)Logical dL:

exists a run of ctrl to
a state where x = x+

⇑ dL proof
(i,ν) |= F(x ,x+)Arithmetical: check at runtime (efficient)

Theorem (Controller Monitor Correctness) (FMSD’16)
Controller safe and in plant bounds as long as monitor satisfied.

Controller Monitor
Immediate detection of unsafe control before actuation
 Safe execution of unverified implementations

in perfect environments
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Summary

ModelPlex ensures that proofs transfer to real CPS

Validate model compliance

Characterize compliance with model in logic

Prover transforms compliance formula to executable monitor

Provably correct runtime model validation by offline + online proof

i−1 i i+1
Model α ctrl plant

...

Model Monitor
model adequate?

Controller Monitor
control safe?

Prediction Monitor
until next cycle?
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