
19: Verified Models & Verified Runtime Validation
Logical Foundations of Cyber-Physical Systems

Logical
Foundations of
Cyber-Physical
Systems

André Platzer

André Platzer

André Platzer (CMU) LFCPS/19: Verified Models & Verified Runtime Validation LFCPS/19 1 / 16

https://lfcps.org/lfcps/
https://lfcps.org/andre.html
http://lfcps.org/andre.html
https://doi.org/10.1007/978-3-319-63588-0_19
http://lfcps.org/lfcps/

Outline

1 Learning Objectives

2 Fundamental Challenges with Inevitable Models

3 Runtime Monitors

4 Model Compliance

5 Provably Correct Monitor Synthesis
Logical State Relations
Model Monitors
Correct-by-Construction Synthesis
Controller Monitors
Prediction Monitors

6 Summary

André Platzer (CMU) LFCPS/19: Verified Models & Verified Runtime Validation LFCPS/19 1 / 16

http://lfcps.org/andre.html
http://lfcps.org/andre.html
https://doi.org/10.1007/978-3-319-63588-0_19
http://lfcps.org/lfcps/

Outline

1 Learning Objectives

2 Fundamental Challenges with Inevitable Models

3 Runtime Monitors

4 Model Compliance

5 Provably Correct Monitor Synthesis
Logical State Relations
Model Monitors
Correct-by-Construction Synthesis
Controller Monitors
Prediction Monitors

6 Summary

André Platzer (CMU) LFCPS/19: Verified Models & Verified Runtime Validation LFCPS/19 1 / 16

http://lfcps.org/andre.html
http://lfcps.org/andre.html
https://doi.org/10.1007/978-3-319-63588-0_19
http://lfcps.org/lfcps/

Learning Objectives
Verified Models & Verified Runtime Validation

CT

M&C CPS

proof in a model vs. truth in reality
tracing assumptions
turning provers upside down
correct-by-construction
dynamic contracts
proofs for CPS implementations

models vs. reality
inevitable differences
model compliance
architectural design

tame CPS complexity
runtime validation
online monitor
prediction vs. run

André Platzer (CMU) LFCPS/19: Verified Models & Verified Runtime Validation LFCPS/19 2 / 16

http://lfcps.org/andre.html
http://lfcps.org/andre.html
https://doi.org/10.1007/978-3-319-63588-0_19
http://lfcps.org/lfcps/

Outline

1 Learning Objectives

2 Fundamental Challenges with Inevitable Models

3 Runtime Monitors

4 Model Compliance

5 Provably Correct Monitor Synthesis
Logical State Relations
Model Monitors
Correct-by-Construction Synthesis
Controller Monitors
Prediction Monitors

6 Summary

André Platzer (CMU) LFCPS/19: Verified Models & Verified Runtime Validation LFCPS/19 2 / 16

http://lfcps.org/andre.html
http://lfcps.org/andre.html
https://doi.org/10.1007/978-3-319-63588-0_19
http://lfcps.org/lfcps/

What Else Could Possibly Go Wrong?

Proposition (System Proved Safe)

A→ [(ctrl;plant)∗]S

All models are wrong but
some are useful. G. Box

Models Predictions need models!

S Right answer to wrong question.

A Proof, so can’t forget condition.
Except too picky to turn on.

ctrl Control model vs.
controller implementation
Abstraction helps scale!

plant Plant model vs.
real physics
Models are inevitable!

Challenge

Verification results about models
only apply if CPS fits to the model

 Verifiably correct runtime model validation

André Platzer (CMU) LFCPS/19: Verified Models & Verified Runtime Validation LFCPS/19 3 / 16

http://lfcps.org/andre.html
http://lfcps.org/andre.html
https://doi.org/10.1007/978-3-319-63588-0_19
http://lfcps.org/lfcps/

What Else Could Possibly Go Wrong?

Proposition (System Proved Safe)

A→ [(ctrl;plant)∗]S

All models are wrong but
some are useful. G. Box

Wrong?

Models Predictions need models!

S Right answer to wrong question.

A Proof, so can’t forget condition.
Except too picky to turn on.

ctrl Control model vs.
controller implementation
Abstraction helps scale!

plant Plant model vs.
real physics
Models are inevitable!

Challenge

Verification results about models
only apply if CPS fits to the model

 Verifiably correct runtime model validation

André Platzer (CMU) LFCPS/19: Verified Models & Verified Runtime Validation LFCPS/19 3 / 16

http://lfcps.org/andre.html
http://lfcps.org/andre.html
https://doi.org/10.1007/978-3-319-63588-0_19
http://lfcps.org/lfcps/

What Else Could Possibly Go Wrong?

Proposition (System Proved Safe)

A→ [(ctrl;plant)∗]S

All models are wrong but
some are useful. G. Box

Wrong?

Models Predictions need models!

S Right answer to wrong question.

A Proof, so can’t forget condition.
Except too picky to turn on.

ctrl Control model vs.
controller implementation
Abstraction helps scale!

plant Plant model vs.
real physics
Models are inevitable!

Challenge

Verification results about models
only apply if CPS fits to the model

 Verifiably correct runtime model validation

André Platzer (CMU) LFCPS/19: Verified Models & Verified Runtime Validation LFCPS/19 3 / 16

http://lfcps.org/andre.html
http://lfcps.org/andre.html
https://doi.org/10.1007/978-3-319-63588-0_19
http://lfcps.org/lfcps/

What Else Could Possibly Go Wrong?

Proposition (System Proved Safe)

A→ [(ctrl;plant)∗]S

All models are wrong but
some are useful. G. Box

Wrong?

Models Predictions need models!

S Right answer to wrong question.

A Proof, so can’t forget condition.
Except too picky to turn on.

ctrl Control model vs.
controller implementation
Abstraction helps scale!

plant Plant model vs.
real physics
Models are inevitable!

Challenge

Verification results about models
only apply if CPS fits to the model

 Verifiably correct runtime model validation

André Platzer (CMU) LFCPS/19: Verified Models & Verified Runtime Validation LFCPS/19 3 / 16

http://lfcps.org/andre.html
http://lfcps.org/andre.html
https://doi.org/10.1007/978-3-319-63588-0_19
http://lfcps.org/lfcps/

What Else Could Possibly Go Wrong?

Proposition (System Proved Safe)

A→ [(ctrl;plant)∗]S

All models are wrong but
some are useful. G. Box

Wrong?

Models Predictions need models!

S Right answer to wrong question.

A Proof, so can’t forget condition.
Except too picky to turn on.

ctrl Control model vs.
controller implementation
Abstraction helps scale!

plant Plant model vs.
real physics
Models are inevitable!

Challenge

Verification results about models
only apply if CPS fits to the model

 Verifiably correct runtime model validation

André Platzer (CMU) LFCPS/19: Verified Models & Verified Runtime Validation LFCPS/19 3 / 16

http://lfcps.org/andre.html
http://lfcps.org/andre.html
https://doi.org/10.1007/978-3-319-63588-0_19
http://lfcps.org/lfcps/

What Else Could Possibly Go Wrong?

Proposition (System Proved Safe)

A→ [(ctrl;plant)∗]S

All models are wrong but
some are useful. G. Box

Wrong?

Models Predictions need models!

S Right answer to wrong question.

A Proof, so can’t forget condition.
Except too picky to turn on.

ctrl Control model vs.
controller implementation
Abstraction helps scale!

plant Plant model vs.
real physics
Models are inevitable!

Challenge

Verification results about models
only apply if CPS fits to the model

 Verifiably correct runtime model validation

André Platzer (CMU) LFCPS/19: Verified Models & Verified Runtime Validation LFCPS/19 3 / 16

http://lfcps.org/andre.html
http://lfcps.org/andre.html
https://doi.org/10.1007/978-3-319-63588-0_19
http://lfcps.org/lfcps/

What Else Could Possibly Go Wrong?

Proposition (System Proved Safe)

A→ [(ctrl;plant)∗]S

All models are wrong but
some are useful. G. Box

Wrong?

Models Predictions need models!

S Right answer to wrong question.

A Proof, so can’t forget condition.
Except too picky to turn on.

ctrl Control model vs.
controller implementation

Abstraction helps scale!

plant Plant model vs.
real physics
Models are inevitable!

Challenge

Verification results about models
only apply if CPS fits to the model

 Verifiably correct runtime model validation

André Platzer (CMU) LFCPS/19: Verified Models & Verified Runtime Validation LFCPS/19 3 / 16

http://lfcps.org/andre.html
http://lfcps.org/andre.html
https://doi.org/10.1007/978-3-319-63588-0_19
http://lfcps.org/lfcps/

What Else Could Possibly Go Wrong?

Proposition (System Proved Safe)

A→ [(ctrl;plant)∗]S

All models are wrong but
some are useful. G. Box

Wrong?

Models Predictions need models!

S Right answer to wrong question.

A Proof, so can’t forget condition.
Except too picky to turn on.

ctrl Control model vs.
controller implementation
Abstraction helps scale!

plant Plant model vs.
real physics
Models are inevitable!

Challenge

Verification results about models
only apply if CPS fits to the model

 Verifiably correct runtime model validation

André Platzer (CMU) LFCPS/19: Verified Models & Verified Runtime Validation LFCPS/19 3 / 16

http://lfcps.org/andre.html
http://lfcps.org/andre.html
https://doi.org/10.1007/978-3-319-63588-0_19
http://lfcps.org/lfcps/

What Else Could Possibly Go Wrong?

Proposition (System Proved Safe)

A→ [(ctrl;plant)∗]S

All models are wrong but
some are useful. G. Box

Wrong?

Models Predictions need models!

S Right answer to wrong question.

A Proof, so can’t forget condition.
Except too picky to turn on.

ctrl Control model vs.
controller implementation
Abstraction helps scale!

plant Plant model vs.
real physics
Models are inevitable!

Challenge

Verification results about models
only apply if CPS fits to the model

 Verifiably correct runtime model validation

André Platzer (CMU) LFCPS/19: Verified Models & Verified Runtime Validation LFCPS/19 3 / 16

http://lfcps.org/andre.html
http://lfcps.org/andre.html
https://doi.org/10.1007/978-3-319-63588-0_19
http://lfcps.org/lfcps/

What Else Could Possibly Go Wrong?

Proposition (System Proved Safe)

A→ [(ctrl;plant)∗]S

All models are wrong but
some are useful. G. Box

Wrong?

Models Predictions need models!

S Right answer to wrong question.

A Proof, so can’t forget condition.
Except too picky to turn on.

ctrl Control model vs.
controller implementation
Abstraction helps scale!

plant Plant model vs.
real physics

Models are inevitable!

Challenge

Verification results about models
only apply if CPS fits to the model

 Verifiably correct runtime model validation

André Platzer (CMU) LFCPS/19: Verified Models & Verified Runtime Validation LFCPS/19 3 / 16

http://lfcps.org/andre.html
http://lfcps.org/andre.html
https://doi.org/10.1007/978-3-319-63588-0_19
http://lfcps.org/lfcps/

What Else Could Possibly Go Wrong?

Proposition (System Proved Safe)

A→ [(ctrl;plant)∗]S

All models are wrong but
some are useful. G. Box

Models Predictions need models!

S Right answer to wrong question.

A Proof, so can’t forget condition.
Except too picky to turn on.

ctrl Control model vs.
controller implementation
Abstraction helps scale!

plant Plant model vs.
real physics
Models are inevitable!

Challenge

Verification results about models
only apply if CPS fits to the model

 Verifiably correct runtime model validation

André Platzer (CMU) LFCPS/19: Verified Models & Verified Runtime Validation LFCPS/19 3 / 16

http://lfcps.org/andre.html
http://lfcps.org/andre.html
https://doi.org/10.1007/978-3-319-63588-0_19
http://lfcps.org/lfcps/

What Else Could Possibly Go Wrong?

Proposition (System Proved Safe)

A→ [(ctrl;plant)∗]S

All models are wrong but
some are useful. G. Box

Models Predictions need models!

S Right answer to wrong question.

A Proof, so can’t forget condition.
Except too picky to turn on.

ctrl Control model vs.
controller implementation
Abstraction helps scale!

plant Plant model vs.
real physics
Models are inevitable!

Challenge

Verification results about models
only apply if CPS fits to the model

 Verifiably correct runtime model validation

André Platzer (CMU) LFCPS/19: Verified Models & Verified Runtime Validation LFCPS/19 3 / 16

http://lfcps.org/andre.html
http://lfcps.org/andre.html
https://doi.org/10.1007/978-3-319-63588-0_19
http://lfcps.org/lfcps/

What Else Could Possibly Go Wrong?

Proposition (System Proved Safe)

A→ [(ctrl;plant)∗]S

All models are wrong but
some are useful. G. Box

Models Predictions need models!

S Right answer to wrong question.

A Proof, so can’t forget condition.
Except too picky to turn on.

ctrl Control model vs.
controller implementation
Abstraction helps scale!

plant Plant model vs.
real physics
Models are inevitable!

Challenge

Verification results about models
only apply if CPS fits to the model

 Verifiably correct runtime model validation

André Platzer (CMU) LFCPS/19: Verified Models & Verified Runtime Validation LFCPS/19 3 / 16

http://lfcps.org/andre.html
http://lfcps.org/andre.html
https://doi.org/10.1007/978-3-319-63588-0_19
http://lfcps.org/lfcps/

What Else Could Possibly Go Wrong?

Proposition (System Proved Safe)

A→ [(ctrl;plant)∗]S

All models are wrong but
some are useful. G. Box

Models Predictions need models!

S Right answer to wrong question.

A Proof, so can’t forget condition.
Except too picky to turn on.

ctrl Control model vs.
controller implementation
Abstraction helps scale!

plant Plant model vs.
real physics
Models are inevitable!

Challenge

Verification results about models
only apply if CPS fits to the model

 Verifiably correct runtime model validation

André Platzer (CMU) LFCPS/19: Verified Models & Verified Runtime Validation LFCPS/19 3 / 16

http://lfcps.org/andre.html
http://lfcps.org/andre.html
https://doi.org/10.1007/978-3-319-63588-0_19
http://lfcps.org/lfcps/

Outline

1 Learning Objectives

2 Fundamental Challenges with Inevitable Models

3 Runtime Monitors

4 Model Compliance

5 Provably Correct Monitor Synthesis
Logical State Relations
Model Monitors
Correct-by-Construction Synthesis
Controller Monitors
Prediction Monitors

6 Summary

André Platzer (CMU) LFCPS/19: Verified Models & Verified Runtime Validation LFCPS/19 3 / 16

http://lfcps.org/andre.html
http://lfcps.org/andre.html
https://doi.org/10.1007/978-3-319-63588-0_19
http://lfcps.org/lfcps/

Runtime Monitor for Runtime Validation of Model

Proposition (System Proved Safe)

A→ [(ctrl;plant)∗]S

Monitors must be correct

Monitor Verified runtime validation!

A Monitor easy if measurable.
Veto turns CPS off.

S Too late to monitor.
CPS already unsafe!

ctrl Monitor each control decision.
Veto overrides decision.

plant No source code for physics.
Observe and compare.
Veto triggers best fallback.

André Platzer (CMU) LFCPS/19: Verified Models & Verified Runtime Validation LFCPS/19 4 / 16

http://lfcps.org/andre.html
http://lfcps.org/andre.html
https://doi.org/10.1007/978-3-319-63588-0_19
http://lfcps.org/lfcps/

Runtime Monitor for Runtime Validation of Model

Proposition (System Proved Safe)

A→ [(ctrl;plant)∗]S

Monitors must be correct

Monitor

Monitor Verified runtime validation!

A Monitor easy if measurable.
Veto turns CPS off.

S Too late to monitor.
CPS already unsafe!

ctrl Monitor each control decision.
Veto overrides decision.

plant No source code for physics.
Observe and compare.
Veto triggers best fallback.

André Platzer (CMU) LFCPS/19: Verified Models & Verified Runtime Validation LFCPS/19 4 / 16

http://lfcps.org/andre.html
http://lfcps.org/andre.html
https://doi.org/10.1007/978-3-319-63588-0_19
http://lfcps.org/lfcps/

Runtime Monitor for Runtime Validation of Model

Proposition (System Proved Safe)

A→ [(ctrl;plant)∗]S

Monitors must be correct

Monitor

Monitor Verified runtime validation!

A Monitor easy if measurable.
Veto turns CPS off.

S Too late to monitor.
CPS already unsafe!

ctrl Monitor each control decision.
Veto overrides decision.

plant No source code for physics.
Observe and compare.
Veto triggers best fallback.

André Platzer (CMU) LFCPS/19: Verified Models & Verified Runtime Validation LFCPS/19 4 / 16

http://lfcps.org/andre.html
http://lfcps.org/andre.html
https://doi.org/10.1007/978-3-319-63588-0_19
http://lfcps.org/lfcps/

Runtime Monitor for Runtime Validation of Model

Proposition (System Proved Safe)

A→ [(ctrl;plant)∗]S

Monitors must be correct

Monitor

Monitor Verified runtime validation!

A Monitor easy if measurable.
Veto turns CPS off.

S Too late to monitor.
CPS already unsafe!

ctrl Monitor each control decision.
Veto overrides decision.

plant No source code for physics.
Observe and compare.
Veto triggers best fallback.

André Platzer (CMU) LFCPS/19: Verified Models & Verified Runtime Validation LFCPS/19 4 / 16

http://lfcps.org/andre.html
http://lfcps.org/andre.html
https://doi.org/10.1007/978-3-319-63588-0_19
http://lfcps.org/lfcps/

Runtime Monitor for Runtime Validation of Model

Proposition (System Proved Safe)

A→ [(ctrl;plant)∗]S

Monitors must be correct

Monitor

Monitor Verified runtime validation!

A Monitor easy if measurable.
Veto turns CPS off.

S Too late to monitor.
CPS already unsafe!

ctrl Monitor each control decision.
Veto overrides decision.

plant No source code for physics.
Observe and compare.
Veto triggers best fallback.

André Platzer (CMU) LFCPS/19: Verified Models & Verified Runtime Validation LFCPS/19 4 / 16

http://lfcps.org/andre.html
http://lfcps.org/andre.html
https://doi.org/10.1007/978-3-319-63588-0_19
http://lfcps.org/lfcps/

Runtime Monitor for Runtime Validation of Model

Sensors

Controller

Actuators

Proposition (System Proved Safe)

A→ [(ctrl;plant)∗]S

Monitors must be correct

Monitor

Monitor Verified runtime validation!

A Monitor easy if measurable.
Veto turns CPS off.

S Too late to monitor.
CPS already unsafe!

ctrl Monitor each control decision.
Veto overrides decision.

plant No source code for physics.
Observe and compare.
Veto triggers best fallback.

André Platzer (CMU) LFCPS/19: Verified Models & Verified Runtime Validation LFCPS/19 4 / 16

http://lfcps.org/andre.html
http://lfcps.org/andre.html
https://doi.org/10.1007/978-3-319-63588-0_19
http://lfcps.org/lfcps/

Runtime Monitor for Runtime Validation of Model

ModelPlex

Sensors

Controller

Compliance
Monitor

Actuators

Proposition (System Proved Safe)

A→ [(ctrl;plant)∗]S

Monitors must be correct

Monitor

Monitor Verified runtime validation!

A Monitor easy if measurable.
Veto turns CPS off.

S Too late to monitor.
CPS already unsafe!

ctrl Monitor each control decision.
Veto overrides decision.

plant No source code for physics.
Observe and compare.
Veto triggers best fallback.

André Platzer (CMU) LFCPS/19: Verified Models & Verified Runtime Validation LFCPS/19 4 / 16

http://lfcps.org/andre.html
http://lfcps.org/andre.html
https://doi.org/10.1007/978-3-319-63588-0_19
http://lfcps.org/lfcps/

Runtime Monitor for Runtime Validation of Model

ModelPlex

Sensors

Controller

Compliance
Monitor

Actuators

Proposition (System Proved Safe)

A→ [(ctrl;plant)∗]S

Monitors must be correct

Monitor

Monitor Verified runtime validation!

A Monitor easy if measurable.
Veto turns CPS off.

S Too late to monitor.
CPS already unsafe!

ctrl Monitor each control decision.
Veto overrides decision.

plant No source code for physics.
Observe and compare.
Veto triggers best fallback.

André Platzer (CMU) LFCPS/19: Verified Models & Verified Runtime Validation LFCPS/19 4 / 16

http://lfcps.org/andre.html
http://lfcps.org/andre.html
https://doi.org/10.1007/978-3-319-63588-0_19
http://lfcps.org/lfcps/

Runtime Monitor for Runtime Validation of Model

ModelPlex

Sensors

Controller

Compliance
Monitor

Actuators

Proposition (System Proved Safe)

A→ [(ctrl;plant)∗]S

Monitors must be correct

Monitor

Monitor Verified runtime validation!

A Monitor easy if measurable.
Veto turns CPS off.

S Too late to monitor.
CPS already unsafe!

ctrl Monitor each control decision.
Veto overrides decision.

plant No source code for physics.
Observe and compare.

Veto triggers best fallback.

André Platzer (CMU) LFCPS/19: Verified Models & Verified Runtime Validation LFCPS/19 4 / 16

http://lfcps.org/andre.html
http://lfcps.org/andre.html
https://doi.org/10.1007/978-3-319-63588-0_19
http://lfcps.org/lfcps/

Runtime Monitor for Runtime Validation of Model

ModelPlex

Sensors

Controller

Compliance
Monitor

Fallback

Actuators

Proposition (System Proved Safe)

A→ [(ctrl;plant)∗]S

Monitors must be correct

Monitor

Monitor Verified runtime validation!

A Monitor easy if measurable.
Veto turns CPS off.

S Too late to monitor.
CPS already unsafe!

ctrl Monitor each control decision.
Veto overrides decision.

plant No source code for physics.
Observe and compare.
Veto triggers best fallback.

André Platzer (CMU) LFCPS/19: Verified Models & Verified Runtime Validation LFCPS/19 4 / 16

http://lfcps.org/andre.html
http://lfcps.org/andre.html
https://doi.org/10.1007/978-3-319-63588-0_19
http://lfcps.org/lfcps/

Runtime Monitor for Runtime Validation of Model

ModelPlex

Sensors

Controller

Compliance
Monitor

Fallback

Actuators

Proposition (System Proved Safe)

A→ [(ctrl;plant)∗]S

Monitors must be correct

Monitor Verified runtime validation!

A Monitor easy if measurable.
Veto turns CPS off.

S Too late to monitor.
CPS already unsafe!

ctrl Monitor each control decision.
Veto overrides decision.

plant No source code for physics.
Observe and compare.
Veto triggers best fallback.

André Platzer (CMU) LFCPS/19: Verified Models & Verified Runtime Validation LFCPS/19 4 / 16

http://lfcps.org/andre.html
http://lfcps.org/andre.html
https://doi.org/10.1007/978-3-319-63588-0_19
http://lfcps.org/lfcps/

Runtime Monitor for Runtime Validation of Model

ModelPlex

Sensors

Controller

Compliance
Monitor

Fallback

Actuators

Proposition (System Proved Safe)

A→ [(ctrl;plant)∗]S

Monitors must be correct

Monitor Verified runtime validation!

A Monitor easy if measurable.
Veto turns CPS off.

S Too late to monitor.
CPS already unsafe!

ctrl Monitor each control decision.
Veto overrides decision.

plant No source code for physics.
Observe and compare.
Veto triggers best fallback.

André Platzer (CMU) LFCPS/19: Verified Models & Verified Runtime Validation LFCPS/19 4 / 16

http://lfcps.org/andre.html
http://lfcps.org/andre.html
https://doi.org/10.1007/978-3-319-63588-0_19
http://lfcps.org/lfcps/

ModelPlex: Verified Runtime Validation of Models

ModelPlex ensures that verification results about models
apply to CPS implementations

i−1 i i+1
Model α ctrl plant

...

model adequate? control safe? until next cycle?

turn
predict

Insights

Verification results about models transfer to CPS when
validating model compliance

Compliance with model is characterizable in logic

Compliance formula transformed by proof to monitor

Correct-by-construction verified runtime model validation

André Platzer (CMU) LFCPS/19: Verified Models & Verified Runtime Validation LFCPS/19 5 / 16

http://lfcps.org/andre.html
http://lfcps.org/andre.html
https://doi.org/10.1007/978-3-319-63588-0_19
http://lfcps.org/lfcps/

ModelPlex: Verified Runtime Validation of Models

ModelPlex ensures that verification results about models
apply to CPS implementations

i−1 i i+1
Model α ctrl plant

...

model adequate? control safe? until next cycle?

turn
predictInsights

Verification results about models transfer to CPS when
validating model compliance

Compliance with model is characterizable in logic

Compliance formula transformed by proof to monitor

Correct-by-construction verified runtime model validation

André Platzer (CMU) LFCPS/19: Verified Models & Verified Runtime Validation LFCPS/19 5 / 16

http://lfcps.org/andre.html
http://lfcps.org/andre.html
https://doi.org/10.1007/978-3-319-63588-0_19
http://lfcps.org/lfcps/

Outline

1 Learning Objectives

2 Fundamental Challenges with Inevitable Models

3 Runtime Monitors

4 Model Compliance

5 Provably Correct Monitor Synthesis
Logical State Relations
Model Monitors
Correct-by-Construction Synthesis
Controller Monitors
Prediction Monitors

6 Summary

André Platzer (CMU) LFCPS/19: Verified Models & Verified Runtime Validation LFCPS/19 5 / 16

http://lfcps.org/andre.html
http://lfcps.org/andre.html
https://doi.org/10.1007/978-3-319-63588-0_19
http://lfcps.org/lfcps/

Outline

i−1 i i+1
Model α ctrl plant

...

turn
predict

Model Monitor

André Platzer (CMU) LFCPS/19: Verified Models & Verified Runtime Validation LFCPS/19 6 / 16

http://lfcps.org/andre.html
http://lfcps.org/andre.html
https://doi.org/10.1007/978-3-319-63588-0_19
http://lfcps.org/lfcps/

Model Compliance

Is present CPS behavior included in the behavior of the model?

CPS observed through sensors

Model describes all possible behavior of CPS between states

observation observation observation

. . .

i−1 i i+1 . . .Model α Model α

⊆ ⊆

fits to

C
P

S
M

od
el

time

Detect non-compliance ASAP to initiate fallback actions while still safe

Challenge

Model describes behavior,
but at runtime we get sampled observations

 Transform model into observation-monitor

André Platzer (CMU) LFCPS/19: Verified Models & Verified Runtime Validation LFCPS/19 7 / 16

http://lfcps.org/andre.html
http://lfcps.org/andre.html
https://doi.org/10.1007/978-3-319-63588-0_19
http://lfcps.org/lfcps/

Model Compliance

Is present CPS behavior included in the behavior of the model?

CPS observed through sensors

Model describes all possible behavior of CPS between states

observation observation observation

. . .

i−1 i i+1 . . .Model α Model α

⊆ ⊆
fits toC

P
S

M
od

el

time

Detect non-compliance ASAP to initiate fallback actions while still safe

Challenge

Model describes behavior,
but at runtime we get sampled observations

 Transform model into observation-monitor

André Platzer (CMU) LFCPS/19: Verified Models & Verified Runtime Validation LFCPS/19 7 / 16

http://lfcps.org/andre.html
http://lfcps.org/andre.html
https://doi.org/10.1007/978-3-319-63588-0_19
http://lfcps.org/lfcps/

Model Compliance

Is present CPS behavior included in the behavior of the model?

CPS observed through sensors

Model describes all possible behavior of CPS between states

observation observation observation

. . .

i−1 i i+1 . . .Model α Model α

⊆ ⊆
fits toC

P
S

M
od

el

time

Detect non-compliance ASAP to initiate fallback actions while still safe

Challenge

Model describes behavior,
but at runtime we get sampled observations

 Transform model into observation-monitor

André Platzer (CMU) LFCPS/19: Verified Models & Verified Runtime Validation LFCPS/19 7 / 16

http://lfcps.org/andre.html
http://lfcps.org/andre.html
https://doi.org/10.1007/978-3-319-63588-0_19
http://lfcps.org/lfcps/

Quantum’s Bouncing Ball Monitors

Proposition (Quantum can bounce around safely)

0≤ x ∧ x = H ∧ v = 0∧g > 0∧1≥ c ≥ 0→
[
(
{x ′ = v ,v ′ =−g&x ≥ 0}; (?x = 0;v :=−cv ∪?x 6= 0)

)∗
](0≤ x∧x ≤H)

Example (Controller Monitor)

(
x = 0∧ v+ =−cv ∨ x > 0∧ v+ = v

)
∧ x+ = x

Example (Plant Monitor)

2g(x+− x) = v2− (v+)2

∧ v+ ≤ v ∧ x ≥ 0∧ x+ ≥ 0

Example (Model Monitor)

x+ > 0∧2g(x+− x) = v2− (v+)2∧ v+ ≤ v ∧ x ≥ 0

∨x+ = 0∧ c22g(x+− x) = c2v2− (v+)2∧ v+ ≥−cv ∧ x ≥ 0

Takeaway

Monitors are subtle, in desperate need of correctness proof.
What proof implies a safe system if the monitors pass?

André Platzer (CMU) LFCPS/19: Verified Models & Verified Runtime Validation LFCPS/19 8 / 16

http://lfcps.org/andre.html
http://lfcps.org/andre.html
https://doi.org/10.1007/978-3-319-63588-0_19
http://lfcps.org/lfcps/

Quantum’s Bouncing Ball Monitors

Proposition (Quantum can bounce around safely)

0≤ x ∧ x = H ∧ v = 0∧g > 0∧1≥ c ≥ 0→
[
(
{x ′ = v ,v ′ =−g&x ≥ 0}; (?x = 0;v :=−cv ∪?x 6= 0)

)∗
](0≤ x∧x ≤H)

Example (Controller Monitor)

(
x = 0∧ v+ =−cv ∨ x > 0∧ v+ = v

)
∧ x+ = x

Example (Plant Monitor)

2g(x+− x) = v2− (v+)2

∧ v+ ≤ v ∧ x ≥ 0∧ x+ ≥ 0

Example (Model Monitor)

x+ > 0∧2g(x+− x) = v2− (v+)2∧ v+ ≤ v ∧ x ≥ 0

∨x+ = 0∧ c22g(x+− x) = c2v2− (v+)2∧ v+ ≥−cv ∧ x ≥ 0

control changes (x ,v) to (x+,v+)

Takeaway

Monitors are subtle, in desperate need of correctness proof.
What proof implies a safe system if the monitors pass?

André Platzer (CMU) LFCPS/19: Verified Models & Verified Runtime Validation LFCPS/19 8 / 16

http://lfcps.org/andre.html
http://lfcps.org/andre.html
https://doi.org/10.1007/978-3-319-63588-0_19
http://lfcps.org/lfcps/

Quantum’s Bouncing Ball Monitors

Proposition (Quantum can bounce around safely)

0≤ x ∧ x = H ∧ v = 0∧g > 0∧1≥ c ≥ 0→
[
(
{x ′ = v ,v ′ =−g&x ≥ 0}; (?x = 0;v :=−cv ∪?x 6= 0)

)∗
](0≤ x∧x ≤H)

Example (Controller Monitor)(
x = 0∧ v+ =−cv ∨ x > 0∧ v+ = v

)
∧ x+ = x

Example (Plant Monitor)

2g(x+− x) = v2− (v+)2

∧ v+ ≤ v ∧ x ≥ 0∧ x+ ≥ 0

Example (Model Monitor)

x+ > 0∧2g(x+− x) = v2− (v+)2∧ v+ ≤ v ∧ x ≥ 0

∨x+ = 0∧ c22g(x+− x) = c2v2− (v+)2∧ v+ ≥−cv ∧ x ≥ 0

control changes (x ,v) to (x+,v+)

Takeaway

Monitors are subtle, in desperate need of correctness proof.
What proof implies a safe system if the monitors pass?

André Platzer (CMU) LFCPS/19: Verified Models & Verified Runtime Validation LFCPS/19 8 / 16

http://lfcps.org/andre.html
http://lfcps.org/andre.html
https://doi.org/10.1007/978-3-319-63588-0_19
http://lfcps.org/lfcps/

Quantum’s Bouncing Ball Monitors

Proposition (Quantum can bounce around safely)

0≤ x ∧ x = H ∧ v = 0∧g > 0∧1≥ c ≥ 0→
[
(
{x ′ = v ,v ′ =−g&x ≥ 0}; (?x = 0;v :=−cv ∪?x 6= 0)

)∗
](0≤ x∧x ≤H)

Example (Controller Monitor)(
x = 0∧ v+ =−cv ∨ x > 0∧ v+ = v

)
∧ x+ = x

Example (Plant Monitor)

2g(x+− x) = v2− (v+)2

∧ v+ ≤ v ∧ x ≥ 0∧ x+ ≥ 0

Example (Model Monitor)

x+ > 0∧2g(x+− x) = v2− (v+)2∧ v+ ≤ v ∧ x ≥ 0

∨x+ = 0∧ c22g(x+− x) = c2v2− (v+)2∧ v+ ≥−cv ∧ x ≥ 0

test+domain

Takeaway

Monitors are subtle, in desperate need of correctness proof.
What proof implies a safe system if the monitors pass?

André Platzer (CMU) LFCPS/19: Verified Models & Verified Runtime Validation LFCPS/19 8 / 16

http://lfcps.org/andre.html
http://lfcps.org/andre.html
https://doi.org/10.1007/978-3-319-63588-0_19
http://lfcps.org/lfcps/

Quantum’s Bouncing Ball Monitors

Proposition (Quantum can bounce around safely)

0≤ x ∧ x = H ∧ v = 0∧g > 0∧1≥ c ≥ 0→
[
(
{x ′ = v ,v ′ =−g&x ≥ 0}; (?x = 0;v :=−cv ∪?x 6= 0)

)∗
](0≤ x∧x ≤H)

Example (Controller Monitor)(
x = 0∧ v+ =−cv ∨ x > 0∧ v+ = v

)
∧ x+ = x

Example (Plant Monitor)

2g(x+− x) = v2− (v+)2

∧ v+ ≤ v ∧ x ≥ 0∧ x+ ≥ 0

Example (Model Monitor)

x+ > 0∧2g(x+− x) = v2− (v+)2∧ v+ ≤ v ∧ x ≥ 0

∨x+ = 0∧ c22g(x+− x) = c2v2− (v+)2∧ v+ ≥−cv ∧ x ≥ 0

Takeaway

Monitors are subtle, in desperate need of correctness proof.
What proof implies a safe system if the monitors pass?

André Platzer (CMU) LFCPS/19: Verified Models & Verified Runtime Validation LFCPS/19 8 / 16

http://lfcps.org/andre.html
http://lfcps.org/andre.html
https://doi.org/10.1007/978-3-319-63588-0_19
http://lfcps.org/lfcps/

Quantum’s Bouncing Ball Monitors

Proposition (Quantum can bounce around safely)

0≤ x ∧ x = H ∧ v = 0∧g > 0∧1≥ c ≥ 0→
[
(
{x ′ = v ,v ′ =−g&x ≥ 0}; (?x = 0;v :=−cv ∪?x 6= 0)

)∗
](0≤ x∧x ≤H)

Example (Controller Monitor)(
x = 0∧ v+ =−cv ∨ x > 0∧ v+ = v

)
∧ x+ = x

Example (Plant Monitor)

2g(x+− x) = v2− (v+)2

∧ v+ ≤ v ∧ x ≥ 0∧ x+ ≥ 0

Example (Model Monitor)

x+ > 0∧2g(x+− x) = v2− (v+)2∧ v+ ≤ v ∧ x ≥ 0

∨x+ = 0∧ c22g(x+− x) = c2v2− (v+)2∧ v+ ≥−cv ∧ x ≥ 0

(v+ = v −gt ∧ x+ = x + vt− g
2 t2)

Takeaway

Monitors are subtle, in desperate need of correctness proof.
What proof implies a safe system if the monitors pass?

André Platzer (CMU) LFCPS/19: Verified Models & Verified Runtime Validation LFCPS/19 8 / 16

http://lfcps.org/andre.html
http://lfcps.org/andre.html
https://doi.org/10.1007/978-3-319-63588-0_19
http://lfcps.org/lfcps/

Quantum’s Bouncing Ball Monitors

Proposition (Quantum can bounce around safely)

0≤ x ∧ x = H ∧ v = 0∧g > 0∧1≥ c ≥ 0→
[
(
{x ′ = v ,v ′ =−g&x ≥ 0}; (?x = 0;v :=−cv ∪?x 6= 0)

)∗
](0≤ x∧x ≤H)

Example (Controller Monitor)(
x = 0∧ v+ =−cv ∨ x > 0∧ v+ = v

)
∧ x+ = x

Example (Plant Monitor)
2g(x+− x) = v2− (v+)2

∧ v+ ≤ v ∧ x ≥ 0∧ x+ ≥ 0

Example (Model Monitor)

x+ > 0∧2g(x+− x) = v2− (v+)2∧ v+ ≤ v ∧ x ≥ 0

∨x+ = 0∧ c22g(x+− x) = c2v2− (v+)2∧ v+ ≥−cv ∧ x ≥ 0

from invariant 2gx = 2gH− v2

Takeaway

Monitors are subtle, in desperate need of correctness proof.
What proof implies a safe system if the monitors pass?

André Platzer (CMU) LFCPS/19: Verified Models & Verified Runtime Validation LFCPS/19 8 / 16

http://lfcps.org/andre.html
http://lfcps.org/andre.html
https://doi.org/10.1007/978-3-319-63588-0_19
http://lfcps.org/lfcps/

Quantum’s Bouncing Ball Monitors

Proposition (Quantum can bounce around safely)

0≤ x ∧ x = H ∧ v = 0∧g > 0∧1≥ c ≥ 0→
[
(
{x ′ = v ,v ′ =−g&x ≥ 0}; (?x = 0;v :=−cv ∪?x 6= 0)

)∗
](0≤ x∧x ≤H)

Example (Controller Monitor)(
x = 0∧ v+ =−cv ∨ x > 0∧ v+ = v

)
∧ x+ = x

Example (Plant Monitor)
2g(x+− x) = v2− (v+)2∧ v+ ≤ v

∧ x ≥ 0∧ x+ ≥ 0

Example (Model Monitor)

x+ > 0∧2g(x+− x) = v2− (v+)2∧ v+ ≤ v ∧ x ≥ 0

∨x+ = 0∧ c22g(x+− x) = c2v2− (v+)2∧ v+ ≥−cv ∧ x ≥ 0

directionality: always falling

Takeaway

Monitors are subtle, in desperate need of correctness proof.
What proof implies a safe system if the monitors pass?

André Platzer (CMU) LFCPS/19: Verified Models & Verified Runtime Validation LFCPS/19 8 / 16

http://lfcps.org/andre.html
http://lfcps.org/andre.html
https://doi.org/10.1007/978-3-319-63588-0_19
http://lfcps.org/lfcps/

Quantum’s Bouncing Ball Monitors

Proposition (Quantum can bounce around safely)

0≤ x ∧ x = H ∧ v = 0∧g > 0∧1≥ c ≥ 0→
[
(
{x ′ = v ,v ′ =−g&x ≥ 0}; (?x = 0;v :=−cv ∪?x 6= 0)

)∗
](0≤ x∧x ≤H)

Example (Controller Monitor)(
x = 0∧ v+ =−cv ∨ x > 0∧ v+ = v

)
∧ x+ = x

Example (Plant Monitor)
2g(x+− x) = v2− (v+)2∧ v+ ≤ v ∧ x ≥ 0∧ x+ ≥ 0

Example (Model Monitor)

x+ > 0∧2g(x+− x) = v2− (v+)2∧ v+ ≤ v ∧ x ≥ 0

∨x+ = 0∧ c22g(x+− x) = c2v2− (v+)2∧ v+ ≥−cv ∧ x ≥ 0

domain

Takeaway

Monitors are subtle, in desperate need of correctness proof.
What proof implies a safe system if the monitors pass?

André Platzer (CMU) LFCPS/19: Verified Models & Verified Runtime Validation LFCPS/19 8 / 16

http://lfcps.org/andre.html
http://lfcps.org/andre.html
https://doi.org/10.1007/978-3-319-63588-0_19
http://lfcps.org/lfcps/

Quantum’s Bouncing Ball Monitors

Proposition (Quantum can bounce around safely)

0≤ x ∧ x = H ∧ v = 0∧g > 0∧1≥ c ≥ 0→
[
(
{x ′ = v ,v ′ =−g&x ≥ 0}; (?x = 0;v :=−cv ∪?x 6= 0)

)∗
](0≤ x∧x ≤H)

Example (Controller Monitor)(
x = 0∧ v+ =−cv ∨ x > 0∧ v+ = v

)
∧ x+ = x

Example (Plant Monitor)
2g(x+− x) = v2− (v+)2∧ v+ ≤ v ∧ x ≥ 0∧ x+ ≥ 0

Example (Model Monitor)

x+ > 0∧2g(x+− x) = v2− (v+)2∧ v+ ≤ v ∧ x ≥ 0

∨x+ = 0∧ c22g(x+− x) = c2v2− (v+)2∧ v+ ≥−cv ∧ x ≥ 0

Takeaway

Monitors are subtle, in desperate need of correctness proof.
What proof implies a safe system if the monitors pass?

André Platzer (CMU) LFCPS/19: Verified Models & Verified Runtime Validation LFCPS/19 8 / 16

http://lfcps.org/andre.html
http://lfcps.org/andre.html
https://doi.org/10.1007/978-3-319-63588-0_19
http://lfcps.org/lfcps/

Quantum’s Bouncing Ball Monitors

Proposition (Quantum can bounce around safely)

0≤ x ∧ x = H ∧ v = 0∧g > 0∧1≥ c ≥ 0→
[
(
{x ′ = v ,v ′ =−g&x ≥ 0}; (?x = 0;v :=−cv ∪?x 6= 0)

)∗
](0≤ x∧x ≤H)

Example (Controller Monitor)(
x = 0∧ v+ =−cv ∨ x > 0∧ v+ = v

)
∧ x+ = x

Example (Plant Monitor)
2g(x+− x) = v2− (v+)2∧ v+ ≤ v ∧ x ≥ 0∧ x+ ≥ 0

Example (Model Monitor)
x+ > 0∧2g(x+− x) = v2− (v+)2∧ v+ ≤ v ∧ x ≥ 0

∨x+ = 0∧ c22g(x+− x) = c2v2− (v+)2∧ v+ ≥−cv ∧ x ≥ 0

Takeaway

Monitors are subtle, in desperate need of correctness proof.
What proof implies a safe system if the monitors pass?

André Platzer (CMU) LFCPS/19: Verified Models & Verified Runtime Validation LFCPS/19 8 / 16

http://lfcps.org/andre.html
http://lfcps.org/andre.html
https://doi.org/10.1007/978-3-319-63588-0_19
http://lfcps.org/lfcps/

Quantum’s Bouncing Ball Monitors

Proposition (Quantum can bounce around safely)

0≤ x ∧ x = H ∧ v = 0∧g > 0∧1≥ c ≥ 0→
[
(
{x ′ = v ,v ′ =−g&x ≥ 0}; (?x = 0;v :=−cv ∪?x 6= 0)

)∗
](0≤ x∧x ≤H)

Example (Controller Monitor)(
x = 0∧ v+ =−cv ∨ x > 0∧ v+ = v

)
∧ x+ = x

Example (Plant Monitor)
2g(x+− x) = v2− (v+)2∧ v+ ≤ v ∧ x ≥ 0∧ x+ ≥ 0

Example (Model Monitor)
x+ > 0∧2g(x+− x) = v2− (v+)2∧ v+ ≤ v ∧ x ≥ 0

∨x+ = 0∧ c22g(x+− x) = c2v2− (v+)2∧ v+ ≥−cv ∧ x ≥ 0

substitute in

Takeaway

Monitors are subtle, in desperate need of correctness proof.
What proof implies a safe system if the monitors pass?

André Platzer (CMU) LFCPS/19: Verified Models & Verified Runtime Validation LFCPS/19 8 / 16

http://lfcps.org/andre.html
http://lfcps.org/andre.html
https://doi.org/10.1007/978-3-319-63588-0_19
http://lfcps.org/lfcps/

Quantum’s Bouncing Ball Monitors

Proposition (Quantum can bounce around safely)

0≤ x ∧ x = H ∧ v = 0∧g > 0∧1≥ c ≥ 0→
[
(
{x ′ = v ,v ′ =−g&x ≥ 0}; (?x = 0;v :=−cv ∪?x 6= 0)

)∗
](0≤ x∧x ≤H)

Example (Controller Monitor)(
x = 0∧ v+ =−cv ∨ x > 0∧ v+ = v

)
∧ x+ = x

Example (Plant Monitor)
2g(x+− x) = v2− (v+)2∧ v+ ≤ v ∧ x ≥ 0∧ x+ ≥ 0

Example (Model Monitor)
x+ > 0∧2g(x+− x) = v2− (v+)2∧ v+ ≤ v ∧ x ≥ 0

∨x+ = 0∧ c22g(x+− x) = c2v2− (v+)2∧ v+ ≥−cv ∧ x ≥ 0

substitute in

Takeaway

Monitors are subtle, in desperate need of correctness proof.
What proof implies a safe system if the monitors pass?

André Platzer (CMU) LFCPS/19: Verified Models & Verified Runtime Validation LFCPS/19 8 / 16

http://lfcps.org/andre.html
http://lfcps.org/andre.html
https://doi.org/10.1007/978-3-319-63588-0_19
http://lfcps.org/lfcps/

Quantum’s Bouncing Ball Monitors

Proposition (Quantum can bounce around safely)

0≤ x ∧ x = H ∧ v = 0∧g > 0∧1≥ c ≥ 0→
[
(
{x ′ = v ,v ′ =−g&x ≥ 0}; (?x = 0;v :=−cv ∪?x 6= 0)

)∗
](0≤ x∧x ≤H)

Example (Controller Monitor)(
x = 0∧ v+ =−cv ∨ x > 0∧ v+ = v

)
∧ x+ = x

Example (Plant Monitor)
2g(x+− x) = v2− (v+)2∧ v+ ≤ v ∧ x ≥ 0∧ x+ ≥ 0

Example (Model Monitor)
x+ > 0∧2g(x+− x) = v2− (v+)2∧ v+ ≤ v ∧ x ≥ 0

∨x+ = 0∧ c22g(x+− x) = c2v2− (v+)2∧ v+ ≥−cv ∧ x ≥ 0

substitute in

Takeaway

Monitors are subtle, in desperate need of correctness proof.
What proof implies a safe system if the monitors pass?

André Platzer (CMU) LFCPS/19: Verified Models & Verified Runtime Validation LFCPS/19 8 / 16

http://lfcps.org/andre.html
http://lfcps.org/andre.html
https://doi.org/10.1007/978-3-319-63588-0_19
http://lfcps.org/lfcps/

Quantum’s Bouncing Ball Monitors

Proposition (Quantum can bounce around safely)

0≤ x ∧ x = H ∧ v = 0∧g > 0∧1≥ c ≥ 0→
[
(
{x ′ = v ,v ′ =−g&x ≥ 0}; (?x = 0;v :=−cv ∪?x 6= 0)

)∗
](0≤ x∧x ≤H)

Example (Controller Monitor)(
x = 0∧ v+ =−cv ∨ x > 0∧ v+ = v

)
∧ x+ = x

Example (Plant Monitor)
2g(x+− x) = v2− (v+)2∧ v+ ≤ v ∧ x ≥ 0∧ x+ ≥ 0

Example (Model Monitor)
x+ > 0∧2g(x+− x) = v2− (v+)2∧ v+ ≤ v ∧ x ≥ 0

∨x+ = 0∧ c22g(x+− x) = c2v2− (v+)2∧ v+ ≥−cv ∧ x ≥ 0

Takeaway

Monitors are subtle, in desperate need of correctness proof.
What proof implies a safe system if the monitors pass?

André Platzer (CMU) LFCPS/19: Verified Models & Verified Runtime Validation LFCPS/19 8 / 16

http://lfcps.org/andre.html
http://lfcps.org/andre.html
https://doi.org/10.1007/978-3-319-63588-0_19
http://lfcps.org/lfcps/

Quantum’s Bouncing Ball Monitors

Proposition (Quantum can bounce around safely)

0≤ x ∧ x = H ∧ v = 0∧g > 0∧1≥ c ≥ 0→
[
(
{x ′ = v ,v ′ =−g&x ≥ 0}; (?x = 0;v :=−cv ∪?x 6= 0)

)∗
](0≤ x∧x ≤H)

Example (Controller Monitor)(
x = 0∧ v+ =−cv ∨ x > 0∧ v+ = v

)
∧ x+ = x

Example (Plant Monitor)
2g(x+− x) = v2− (v+)2∧ v+ ≤ v ∧ x ≥ 0∧ x+ ≥ 0

Example (Model Monitor)
x+ > 0∧2g(x+− x) = v2− (v+)2∧ v+ ≤ v ∧ x ≥ 0

∨x+ = 0∧ c22g(x+− x) = c2v2− (v+)2∧ v+ ≥−cv ∧ x ≥ 0

Takeaway

Monitors are subtle, in desperate need of correctness proof.
What proof implies a safe system if the monitors pass?

André Platzer (CMU) LFCPS/19: Verified Models & Verified Runtime Validation LFCPS/19 8 / 16

http://lfcps.org/andre.html
http://lfcps.org/andre.html
https://doi.org/10.1007/978-3-319-63588-0_19
http://lfcps.org/lfcps/

Outline

1 Learning Objectives

2 Fundamental Challenges with Inevitable Models

3 Runtime Monitors

4 Model Compliance

5 Provably Correct Monitor Synthesis
Logical State Relations
Model Monitors
Correct-by-Construction Synthesis
Controller Monitors
Prediction Monitors

6 Summary

André Platzer (CMU) LFCPS/19: Verified Models & Verified Runtime Validation LFCPS/19 8 / 16

http://lfcps.org/andre.html
http://lfcps.org/andre.html
https://doi.org/10.1007/978-3-319-63588-0_19
http://lfcps.org/lfcps/

Characterizing State Relations in Logic

When are two states linked through a run of model α?

i−1 i

a prior state
characterized by x

a posterior state
characterized by x+

Not initial state.
Model repeats. . .

dL proof A→ [α]S

Init i−1 ∈ [[A]] Safe i ∈ [[S]]

Model α

⊆

Offline

(i−1, i) ∈ [[α]]Semantical: reachability relation of α

m Lemma
(i−1, i) |= 〈α〉(x = x+)Logical dL:

exists a run of α to a
state where x = x+

m⇑
(i−1, i) |= F(x ,x+)Arithmetical:

dL proof

check at runtime (efficient)

André Platzer (CMU) LFCPS/19: Verified Models & Verified Runtime Validation LFCPS/19 9 / 16

http://lfcps.org/andre.html
http://lfcps.org/andre.html
https://doi.org/10.1007/978-3-319-63588-0_19
http://lfcps.org/lfcps/

Characterizing State Relations in Logic

When are two states linked through a run of model α?

ω ν

a prior state
characterized by x

a posterior state
characterized by x+

Not initial state.
Model repeats. . .

dL proof A→ [α]S

Init ω ∈ [[A]] Safe ν ∈ [[S]]

Model α

⊆

Offline

(ω,ν) ∈ [[α]]Semantical: reachability relation of α

m Lemma
(ω,ν) |= 〈α〉(x = x+)Logical dL:

exists a run of α to a
state where x = x+

m⇑
(ω,ν) |= F(x ,x+)Arithmetical:

dL proof

check at runtime (efficient)

André Platzer (CMU) LFCPS/19: Verified Models & Verified Runtime Validation LFCPS/19 9 / 16

http://lfcps.org/andre.html
http://lfcps.org/andre.html
https://doi.org/10.1007/978-3-319-63588-0_19
http://lfcps.org/lfcps/

Characterizing State Relations in Logic

When are two states linked through a run of model α?

ω ν

a prior state
characterized by x

a posterior state
characterized by x+

Not initial state.
Model repeats. . .

dL proof A→ [α]S

Init ω ∈ [[A]] Safe ν ∈ [[S]]

Model α

⊆

Offline

(ω,ν) ∈ [[α]]Semantical: reachability relation of α

m Lemma
(ω,ν) |= 〈α〉(x = x+)Logical dL:

exists a run of α to a
state where x = x+

m⇑
(ω,ν) |= F(x ,x+)Arithmetical:

dL proof

check at runtime (efficient)

André Platzer (CMU) LFCPS/19: Verified Models & Verified Runtime Validation LFCPS/19 9 / 16

http://lfcps.org/andre.html
http://lfcps.org/andre.html
https://doi.org/10.1007/978-3-319-63588-0_19
http://lfcps.org/lfcps/

Characterizing State Relations in Logic

When are two states linked through a run of model α?

ω ν

a prior state
characterized by x

a posterior state
characterized by x+

Not initial state.
Model repeats. . .

dL proof A→ [α]S

Init ω ∈ [[A]] Safe ν ∈ [[S]]

Model α

⊆

Offline

(ω,ν) ∈ [[α]]Semantical:

reachability relation of α

m Lemma
(ω,ν) |= 〈α〉(x = x+)Logical dL:

exists a run of α to a
state where x = x+

m⇑
(ω,ν) |= F(x ,x+)Arithmetical:

dL proof

check at runtime (efficient)

André Platzer (CMU) LFCPS/19: Verified Models & Verified Runtime Validation LFCPS/19 9 / 16

http://lfcps.org/andre.html
http://lfcps.org/andre.html
https://doi.org/10.1007/978-3-319-63588-0_19
http://lfcps.org/lfcps/

Characterizing State Relations in Logic

When are two states linked through a run of model α?

ω ν

a prior state
characterized by x

a posterior state
characterized by x+

Not initial state.
Model repeats. . .

dL proof A→ [α]S

Init ω ∈ [[A]] Safe ν ∈ [[S]]

Model α

⊆

Offline

(ω,ν) ∈ [[α]]Semantical:

reachability relation of α

m Lemma
(ω,ν) |= 〈α〉(x = x+)Logical dL:

exists a run of α to a
state where x = x+

m

⇑

(ω,ν) |= F(x ,x+)Arithmetical:

dL proof

check at runtime (efficient)

André Platzer (CMU) LFCPS/19: Verified Models & Verified Runtime Validation LFCPS/19 9 / 16

http://lfcps.org/andre.html
http://lfcps.org/andre.html
https://doi.org/10.1007/978-3-319-63588-0_19
http://lfcps.org/lfcps/

Characterizing State Relations in Logic

When are two states linked through a run of model α?

ω ν

a prior state
characterized by x

a posterior state
characterized by x+

Not initial state.
Model repeats. . .

dL proof A→ [α]S

Init ω ∈ [[A]] Safe ν ∈ [[S]]

Model α

⊆

Offline

(ω,ν) ∈ [[α]]Semantical:

reachability relation of α

m Lemma
(ω,ν) |= 〈α〉(x = x+)Logical dL:

exists a run of α to a
state where x = x+

m

⇑
(ω,ν) |= F(x ,x+)Arithmetical:

dL proof

check at runtime (efficient)

André Platzer (CMU) LFCPS/19: Verified Models & Verified Runtime Validation LFCPS/19 9 / 16

http://lfcps.org/andre.html
http://lfcps.org/andre.html
https://doi.org/10.1007/978-3-319-63588-0_19
http://lfcps.org/lfcps/

Logical Reductions for Model Safety Transfer

Logic reduces CPS safety to runtime monitor with offline proof

ω ν

a prior state
characterized by x

a posterior state
characterized by x+

Not initial state.
Model repeats. . .

dL proof A→ [α]S

Init ω ∈ [[A]] Safe ν ∈ [[S]]

Model α

⊆

Offline

(ω,ν) ∈ [[α]]Semantical:

reachability relation of α

m Lemma
(ω,ν) |= 〈α〉(x = x+)Logical dL:

exists a run of α to a
state where x = x+

m

⇑
(ω,ν) |= F(x ,x+)Arithmetical:

dL proof

check at runtime (efficient)

André Platzer (CMU) LFCPS/19: Verified Models & Verified Runtime Validation LFCPS/19 9 / 16

http://lfcps.org/andre.html
http://lfcps.org/andre.html
https://doi.org/10.1007/978-3-319-63588-0_19
http://lfcps.org/lfcps/

Logical Reductions for Model Safety Transfer

Logic reduces CPS safety to runtime monitor with offline proof

ω ν

a prior state
characterized by x

a posterior state
characterized by x+

Not initial state.
Model repeats. . .

dL proof A→ [α]S

Init ω ∈ [[A]]

Safe ν ∈ [[S]]

Model α

⊆

Offline

(ω,ν) ∈ [[α]]Semantical:

reachability relation of α

m Lemma
(ω,ν) |= 〈α〉(x = x+)Logical dL:

exists a run of α to a
state where x = x+

m

⇑
(ω,ν) |= F(x ,x+)Arithmetical:

dL proof

check at runtime (efficient)

André Platzer (CMU) LFCPS/19: Verified Models & Verified Runtime Validation LFCPS/19 9 / 16

http://lfcps.org/andre.html
http://lfcps.org/andre.html
https://doi.org/10.1007/978-3-319-63588-0_19
http://lfcps.org/lfcps/

Logical Reductions for Model Safety Transfer

Logic reduces CPS safety to runtime monitor with offline proof

ω ν

a prior state
characterized by x

a posterior state
characterized by x+

Not initial state.
Model repeats. . .

dL proof A→ [α]S

Init ω ∈ [[A]] Safe ν ∈ [[S]]

Model α

⊆

Offline

(ω,ν) ∈ [[α]]Semantical:

reachability relation of α

m Lemma
(ω,ν) |= 〈α〉(x = x+)Logical dL:

exists a run of α to a
state where x = x+

m

⇑
(ω,ν) |= F(x ,x+)Arithmetical:

dL proof

check at runtime (efficient)

André Platzer (CMU) LFCPS/19: Verified Models & Verified Runtime Validation LFCPS/19 9 / 16

http://lfcps.org/andre.html
http://lfcps.org/andre.html
https://doi.org/10.1007/978-3-319-63588-0_19
http://lfcps.org/lfcps/

Logical Reductions for Model Safety Transfer

Logic reduces CPS safety to runtime monitor with offline proof

ω ν

a prior state
characterized by x

a posterior state
characterized by x+

Not initial state.
Model repeats. . .

dL proof A→ [α]S

Init ω ∈ [[A]] Safe ν ∈ [[S]]

Model α

⊆

Offline

(ω,ν) ∈ [[α]]Semantical:

reachability relation of α

m Lemma
(ω,ν) |= 〈α〉(x = x+)Logical dL:

exists a run of α to a
state where x = x+

m

⇑
(ω,ν) |= F(x ,x+)Arithmetical:

dL proof

check at runtime (efficient)

André Platzer (CMU) LFCPS/19: Verified Models & Verified Runtime Validation LFCPS/19 9 / 16

http://lfcps.org/andre.html
http://lfcps.org/andre.html
https://doi.org/10.1007/978-3-319-63588-0_19
http://lfcps.org/lfcps/

Logical Reductions for Model Safety Transfer

Logic reduces CPS safety to runtime monitor with offline proof

ω ν

a prior state
characterized by x

a posterior state
characterized by x+

Not initial state.
Model repeats. . .

dL proof A→ [α]S

Init ω ∈ [[A]] Safe ν ∈ [[S]]

Model α

⊆

Offline

(ω,ν) ∈ [[α]]Semantical:

reachability relation of α

m Lemma
(ω,ν) |= 〈α〉(x = x+)Logical dL:

exists a run of α to a
state where x = x+

m

⇑
(ω,ν) |= F(x ,x+)Arithmetical:

dL proof

check at runtime (efficient)

André Platzer (CMU) LFCPS/19: Verified Models & Verified Runtime Validation LFCPS/19 9 / 16

http://lfcps.org/andre.html
http://lfcps.org/andre.html
https://doi.org/10.1007/978-3-319-63588-0_19
http://lfcps.org/lfcps/

Logical Reductions for Model Safety Transfer

Logic reduces CPS safety to runtime monitor with offline proof

ω ν

a prior state
characterized by x

a posterior state
characterized by x+

Not initial state.
Model repeats. . .

dL proof A→ [α]S

Init ω ∈ [[A]] Safe ν ∈ [[S]]

Model α

⊆

Offline

(ω,ν) ∈ [[α]]Semantical:

reachability relation of α

m Lemma
(ω,ν) |= 〈α〉(x = x+)Logical dL:

exists a run of α to a
state where x = x+

m

⇑
(ω,ν) |= F(x ,x+)Arithmetical:

dL proof

check at runtime (efficient)

André Platzer (CMU) LFCPS/19: Verified Models & Verified Runtime Validation LFCPS/19 9 / 16

http://lfcps.org/andre.html
http://lfcps.org/andre.html
https://doi.org/10.1007/978-3-319-63588-0_19
http://lfcps.org/lfcps/

Logical Reductions for Model Safety Transfer

Logic reduces CPS safety to runtime monitor with offline proof

ω ν

a prior state
characterized by x

a posterior state
characterized by x+

Not initial state.
Model repeats. . .

dL proof A→ [α]S

Init ω ∈ [[A]] Safe ν ∈ [[S]]

Model α

⊆

Offline

(ω,ν) ∈ [[α]]Semantical:

reachability relation of α

m Lemma
(ω,ν) |= 〈α〉(x = x+)Logical dL:

exists a run of α to a
state where x = x+

m

⇑
(ω,ν) |= F(x ,x+)Arithmetical:

dL proof

check at runtime (efficient)

André Platzer (CMU) LFCPS/19: Verified Models & Verified Runtime Validation LFCPS/19 9 / 16

http://lfcps.org/andre.html
http://lfcps.org/andre.html
https://doi.org/10.1007/978-3-319-63588-0_19
http://lfcps.org/lfcps/

Logical Reductions for Model Safety Transfer

Logic reduces CPS safety to runtime monitor with offline proof

ω ν

a prior state
characterized by x

a posterior state
characterized by x+

Not initial state.
Model repeats. . .

dL proof A→ [α]S

Init ω ∈ [[A]] Safe ν ∈ [[S]]

Model α

⊆

Offline

(ω,ν) ∈ [[α]]Semantical:

reachability relation of α

m Lemma
(ω,ν) |= 〈α〉(x = x+)Logical dL:

exists a run of α to a
state where x = x+

m

⇑
(ω,ν) |= F(x ,x+)Arithmetical:

dL proof

check at runtime (efficient)

André Platzer (CMU) LFCPS/19: Verified Models & Verified Runtime Validation LFCPS/19 9 / 16

http://lfcps.org/andre.html
http://lfcps.org/andre.html
https://doi.org/10.1007/978-3-319-63588-0_19
http://lfcps.org/lfcps/

Logical Reductions for Model Safety Transfer

Logic reduces CPS safety to runtime monitor with offline proof

ω ν

a prior state
characterized by x

a posterior state
characterized by x+

Not initial state.
Model repeats. . .

dL proof A→ [α]S

Init ω ∈ [[A]] Safe ν ∈ [[S]]

Model α

⊆

Offline

(ω,ν) ∈ [[α]]Semantical:

reachability relation of α

m Lemma
(ω,ν) |= 〈α〉(x = x+)Logical dL:

exists a run of α to a
state where x = x+

m

⇑
(ω,ν) |= F(x ,x+)Arithmetical:

dL proof

check at runtime (efficient)

André Platzer (CMU) LFCPS/19: Verified Models & Verified Runtime Validation LFCPS/19 9 / 16

http://lfcps.org/andre.html
http://lfcps.org/andre.html
https://doi.org/10.1007/978-3-319-63588-0_19
http://lfcps.org/lfcps/

Logical Reductions for α∗ Model Safety Transfer

Logic reduces CPS safety to runtime monitor with offline proof

ω ν

a prior state
characterized by x

a posterior state
characterized by x+

Not initial state.
Model repeats. . .

dL proof A→ [α∗]S

Init ω ∈ [[A]] Safe ν ∈ [[S]]

Model α∗

⊆

Offline

(ω,ν) ∈ [[α∗]]Semantical:

reachability relation of α∗

m Lemma
(ω,ν) |= 〈α∗〉(x = x+)Logical dL:

exists a run of α∗ to
a state where x = x+

m

⇑
(ω,ν) |= F(x ,x+)Arithmetical:

dL proof

check at runtime (efficient)

André Platzer (CMU) LFCPS/19: Verified Models & Verified Runtime Validation LFCPS/19 9 / 16

http://lfcps.org/andre.html
http://lfcps.org/andre.html
https://doi.org/10.1007/978-3-319-63588-0_19
http://lfcps.org/lfcps/

ModelPlex Model Monitor Correctness

0 i−1 i i+1
Model α Model α Model α

⊆ ⊆ ⊆

Init 0 |= A Check (i, i+1) |= 〈α〉x=x+

dL proof A→ [α∗]S

Safe i+1 |= S

Theorem (Model Monitor Correctness) (FMSD’16)
System safe as long as monitor satisfied.

André Platzer (CMU) LFCPS/19: Verified Models & Verified Runtime Validation LFCPS/19 10 / 16

http://lfcps.org/andre.html
http://doi.org/10.1007/s10703-016-0241-z
http://lfcps.org/andre.html
https://doi.org/10.1007/978-3-319-63588-0_19
http://lfcps.org/lfcps/

ModelPlex Model Monitor Correctness

0 i−1 i i+1
Model α Model α Model α

⊆ ⊆ ⊆

Init 0 |= A Check (i, i+1) |= 〈α〉x=x+

dL proof A→ [α∗]S

Safe i+1 |= S

Theorem (Model Monitor Correctness) (FMSD’16)
System safe as long as monitor satisfied.

André Platzer (CMU) LFCPS/19: Verified Models & Verified Runtime Validation LFCPS/19 10 / 16

http://lfcps.org/andre.html
http://doi.org/10.1007/s10703-016-0241-z
http://lfcps.org/andre.html
https://doi.org/10.1007/978-3-319-63588-0_19
http://lfcps.org/lfcps/

ModelPlex Model Monitor Correctness

0 i−1 i i+1
Model α Model α Model α

⊆ ⊆ ⊆

Init 0 |= A

Check (i, i+1) |= 〈α〉x=x+

dL proof A→ [α∗]S

Safe i+1 |= S

Theorem (Model Monitor Correctness) (FMSD’16)
System safe as long as monitor satisfied.

André Platzer (CMU) LFCPS/19: Verified Models & Verified Runtime Validation LFCPS/19 10 / 16

http://lfcps.org/andre.html
http://doi.org/10.1007/s10703-016-0241-z
http://lfcps.org/andre.html
https://doi.org/10.1007/978-3-319-63588-0_19
http://lfcps.org/lfcps/

ModelPlex Model Monitor Correctness

0 i−1 i i+1
Model α Model α Model α

⊆ ⊆ ⊆

Init 0 |= A Check (i, i+1) |= 〈α〉x=x+

dL proof A→ [α∗]S

Safe i+1 |= S

Theorem (Model Monitor Correctness) (FMSD’16)
System safe as long as monitor satisfied.

André Platzer (CMU) LFCPS/19: Verified Models & Verified Runtime Validation LFCPS/19 10 / 16

http://lfcps.org/andre.html
http://doi.org/10.1007/s10703-016-0241-z
http://lfcps.org/andre.html
https://doi.org/10.1007/978-3-319-63588-0_19
http://lfcps.org/lfcps/

ModelPlex Model Monitor Correctness

0 i−1 i i+1
Model α Model α Model α

⊆ ⊆ ⊆

Init 0 |= A Check (i, i+1) |= 〈α〉x=x+

dL proof A→ [α∗]S

Safe i+1 |= S

Theorem (Model Monitor Correctness) (FMSD’16)
System safe as long as monitor satisfied.

André Platzer (CMU) LFCPS/19: Verified Models & Verified Runtime Validation LFCPS/19 10 / 16

http://lfcps.org/andre.html
http://doi.org/10.1007/s10703-016-0241-z
http://lfcps.org/andre.html
https://doi.org/10.1007/978-3-319-63588-0_19
http://lfcps.org/lfcps/

ModelPlex Model Monitor Correctness

0 i−1 i i+1
Model α Model α Model α

⊆ ⊆ ⊆

Init 0 |= A Check (i, i+1) |= 〈α〉x=x+

dL proof A→ [α∗]S

Safe i+1 |= S

Theorem (Model Monitor Correctness) (FMSD’16)
System safe as long as monitor satisfied.

André Platzer (CMU) LFCPS/19: Verified Models & Verified Runtime Validation LFCPS/19 10 / 16

http://lfcps.org/andre.html
http://doi.org/10.1007/s10703-016-0241-z
http://lfcps.org/andre.html
https://doi.org/10.1007/978-3-319-63588-0_19
http://lfcps.org/lfcps/

Correct-by-Construction Synthesis

dL proof calculus executes models symbolically

Model α

i−1 iprior state x posterior state x+Model α

climb
descend

proof attempt
〈α(x)〉(x = x+)

〈climb∪descend〉(x = x+)

〈climb∪descend〉P↔
〈climb〉P ∨〈descend〉P

∨
〈climb〉(x = x+) 〈descend〉(x = x+)

F1(x ,x+) F2(x ,x+)

F1(x ,x+)∨F2(x ,x+)Monitor:

The subgoals that cannot be proved express all the conditions on the
relations of variables imposed by the model prove at runtime

Model Monitor
Immediate detection of model violation

 Mitigates safety issues with safe fallback action

André Platzer (CMU) LFCPS/19: Verified Models & Verified Runtime Validation LFCPS/19 11 / 16

http://lfcps.org/andre.html
http://lfcps.org/andre.html
https://doi.org/10.1007/978-3-319-63588-0_19
http://lfcps.org/lfcps/

Correct-by-Construction Synthesis

dL proof calculus executes models symbolically

Model α

i−1 iprior state x posterior state x+

Model α

climb
descend

proof attempt

〈α(x)〉(x = x+)

〈climb∪descend〉(x = x+)

〈climb∪descend〉P↔
〈climb〉P ∨〈descend〉P

∨
〈climb〉(x = x+) 〈descend〉(x = x+)

F1(x ,x+) F2(x ,x+)

F1(x ,x+)∨F2(x ,x+)Monitor:

The subgoals that cannot be proved express all the conditions on the
relations of variables imposed by the model prove at runtime

Model Monitor
Immediate detection of model violation

 Mitigates safety issues with safe fallback action

André Platzer (CMU) LFCPS/19: Verified Models & Verified Runtime Validation LFCPS/19 11 / 16

http://lfcps.org/andre.html
http://lfcps.org/andre.html
https://doi.org/10.1007/978-3-319-63588-0_19
http://lfcps.org/lfcps/

Correct-by-Construction Synthesis

dL proof calculus executes models symbolically

Model α

i−1 iprior state x posterior state x+

Model α

climb
descend

proof attempt

〈α(x)〉(x = x+)

〈climb∪descend〉(x = x+)

〈climb∪descend〉P↔
〈climb〉P ∨〈descend〉P

∨
〈climb〉(x = x+) 〈descend〉(x = x+)

F1(x ,x+) F2(x ,x+)

F1(x ,x+)∨F2(x ,x+)Monitor:

The subgoals that cannot be proved express all the conditions on the
relations of variables imposed by the model prove at runtime

Model Monitor
Immediate detection of model violation

 Mitigates safety issues with safe fallback action

André Platzer (CMU) LFCPS/19: Verified Models & Verified Runtime Validation LFCPS/19 11 / 16

http://lfcps.org/andre.html
http://lfcps.org/andre.html
https://doi.org/10.1007/978-3-319-63588-0_19
http://lfcps.org/lfcps/

Correct-by-Construction Synthesis

dL proof calculus executes models symbolically

Model α

i−1 iprior state x posterior state x+

Model α

climb
descend

proof attempt

〈α(x)〉(x = x+)

〈climb∪descend〉(x = x+)

〈climb∪descend〉P↔
〈climb〉P ∨〈descend〉P

∨
〈climb〉(x = x+) 〈descend〉(x = x+)

F1(x ,x+) F2(x ,x+)

F1(x ,x+)∨F2(x ,x+)Monitor:

The subgoals that cannot be proved express all the conditions on the
relations of variables imposed by the model prove at runtime

Model Monitor
Immediate detection of model violation

 Mitigates safety issues with safe fallback action

André Platzer (CMU) LFCPS/19: Verified Models & Verified Runtime Validation LFCPS/19 11 / 16

http://lfcps.org/andre.html
http://lfcps.org/andre.html
https://doi.org/10.1007/978-3-319-63588-0_19
http://lfcps.org/lfcps/

Correct-by-Construction Synthesis

dL proof calculus executes models symbolically

Model α

i−1 iprior state x posterior state x+

Model α

climb
descend

proof attempt

〈α(x)〉(x = x+)

〈climb∪descend〉(x = x+)

〈climb∪descend〉P↔
〈climb〉P ∨〈descend〉P

∨
〈climb〉(x = x+) 〈descend〉(x = x+)

F1(x ,x+) F2(x ,x+)

F1(x ,x+)∨F2(x ,x+)Monitor:

The subgoals that cannot be proved express all the conditions on the
relations of variables imposed by the model prove at runtime

Model Monitor
Immediate detection of model violation

 Mitigates safety issues with safe fallback action

André Platzer (CMU) LFCPS/19: Verified Models & Verified Runtime Validation LFCPS/19 11 / 16

http://lfcps.org/andre.html
http://lfcps.org/andre.html
https://doi.org/10.1007/978-3-319-63588-0_19
http://lfcps.org/lfcps/

Correct-by-Construction Synthesis

dL proof calculus executes models symbolically

Model α

i−1 iprior state x posterior state x+

Model α

climb
descend

proof attempt

〈α(x)〉(x = x+)

〈climb∪descend〉(x = x+)

〈climb∪descend〉P↔
〈climb〉P ∨〈descend〉P

∨
〈climb〉(x = x+) 〈descend〉(x = x+)

F1(x ,x+) F2(x ,x+)

F1(x ,x+)∨F2(x ,x+)Monitor:

The subgoals that cannot be proved express all the conditions on the
relations of variables imposed by the model prove at runtime

Model Monitor
Immediate detection of model violation

 Mitigates safety issues with safe fallback action

André Platzer (CMU) LFCPS/19: Verified Models & Verified Runtime Validation LFCPS/19 11 / 16

http://lfcps.org/andre.html
http://lfcps.org/andre.html
https://doi.org/10.1007/978-3-319-63588-0_19
http://lfcps.org/lfcps/

Correct-by-Construction Synthesis

dL proof calculus executes models symbolically

Model α

i−1 iprior state x posterior state x+

Model α

climb
descend

proof attempt

〈α(x)〉(x = x+)

〈climb∪descend〉(x = x+)

〈climb∪descend〉P↔
〈climb〉P ∨〈descend〉P

∨
〈climb〉(x = x+) 〈descend〉(x = x+)

F1(x ,x+) F2(x ,x+)

F1(x ,x+)∨F2(x ,x+)Monitor:

The subgoals that cannot be proved express all the conditions on the
relations of variables imposed by the model prove at runtime

Model Monitor
Immediate detection of model violation

 Mitigates safety issues with safe fallback action

André Platzer (CMU) LFCPS/19: Verified Models & Verified Runtime Validation LFCPS/19 11 / 16

http://lfcps.org/andre.html
http://lfcps.org/andre.html
https://doi.org/10.1007/978-3-319-63588-0_19
http://lfcps.org/lfcps/

Outline

Typical (ctrl;plant)∗ models can check earlier

i−1 i i+1
Model α ctrl plant

...

turn
predict

Controller Monitor

André Platzer (CMU) LFCPS/19: Verified Models & Verified Runtime Validation LFCPS/19 12 / 16

http://lfcps.org/andre.html
http://lfcps.org/andre.html
https://doi.org/10.1007/978-3-319-63588-0_19
http://lfcps.org/lfcps/

Controller Monitor: Veto Early If Noncompliant

Model α

Offline

i

ν

i+1prior state x posterior state x+Model α

ctrl plant

Model Monitor

Controller Monitor before actuation
posterior state x+

(i,ν) ∈ [[ctrl]]Semantical: reachability relation of ctrl
m Theorem

(i,ν) |= 〈ctrl〉(x = x+)Logical dL:

exists a run of ctrl to
a state where x = x+

⇑ dL proof
(i,ν) |= F(x ,x+)Arithmetical: check at runtime (efficient)

Theorem (Controller Monitor Correctness) (FMSD’16)
Controller safe and in plant bounds as long as monitor satisfied.

Controller Monitor
Immediate detection of unsafe control before actuation
 Safe execution of unverified implementations

in perfect environments

André Platzer (CMU) LFCPS/19: Verified Models & Verified Runtime Validation LFCPS/19 13 / 16

http://lfcps.org/andre.html
http://doi.org/10.1007/s10703-016-0241-z
http://lfcps.org/andre.html
https://doi.org/10.1007/978-3-319-63588-0_19
http://lfcps.org/lfcps/

Controller Monitor: Veto Early If Noncompliant
Model α

Offline

ω ν i+1prior state x

posterior state x+Model α

ctrl plant

Model Monitor

Controller Monitor before actuation
posterior state x+

(ω,ν) ∈ [[ctrl]]Semantical: reachability relation of ctrl

m Theorem
(ω,ν) |= 〈ctrl〉(x = x+)Logical dL:

exists a run of ctrl to
a state where x = x+

⇑ dL proof
(ω,ν) |= F(x ,x+)Arithmetical: check at runtime (efficient)

Theorem (Controller Monitor Correctness) (FMSD’16)
Controller safe and in plant bounds as long as monitor satisfied.

Controller Monitor
Immediate detection of unsafe control before actuation
 Safe execution of unverified implementations

in perfect environments

André Platzer (CMU) LFCPS/19: Verified Models & Verified Runtime Validation LFCPS/19 13 / 16

http://lfcps.org/andre.html
http://doi.org/10.1007/s10703-016-0241-z
http://lfcps.org/andre.html
https://doi.org/10.1007/978-3-319-63588-0_19
http://lfcps.org/lfcps/

Controller Monitor: Veto Early If Noncompliant
Model α

Offline

ω ν i+1prior state x

posterior state x+Model α

ctrl plant

Model Monitor

Controller Monitor before actuation
posterior state x+

(ω,ν) ∈ [[ctrl]]Semantical:

reachability relation of ctrl

m Theorem
(ω,ν) |= 〈ctrl〉(x = x+)Logical dL:

exists a run of ctrl to
a state where x = x+

⇑ dL proof
(ω,ν) |= F(x ,x+)Arithmetical: check at runtime (efficient)

Theorem (Controller Monitor Correctness) (FMSD’16)
Controller safe and in plant bounds as long as monitor satisfied.

Controller Monitor
Immediate detection of unsafe control before actuation
 Safe execution of unverified implementations

in perfect environments

André Platzer (CMU) LFCPS/19: Verified Models & Verified Runtime Validation LFCPS/19 13 / 16

http://lfcps.org/andre.html
http://doi.org/10.1007/s10703-016-0241-z
http://lfcps.org/andre.html
https://doi.org/10.1007/978-3-319-63588-0_19
http://lfcps.org/lfcps/

Controller Monitor: Veto Early If Noncompliant
Model α

Offline

ω ν i+1prior state x

posterior state x+Model α

ctrl plant

Model Monitor

Controller Monitor before actuation
posterior state x+

(ω,ν) ∈ [[ctrl]]Semantical:

reachability relation of ctrl

m Theorem
(ω,ν) |= 〈ctrl〉(x = x+)Logical dL:

exists a run of ctrl to
a state where x = x+

⇑ dL proof
(ω,ν) |= F(x ,x+)Arithmetical: check at runtime (efficient)

Theorem (Controller Monitor Correctness) (FMSD’16)
Controller safe and in plant bounds as long as monitor satisfied.

Controller Monitor
Immediate detection of unsafe control before actuation
 Safe execution of unverified implementations

in perfect environments

André Platzer (CMU) LFCPS/19: Verified Models & Verified Runtime Validation LFCPS/19 13 / 16

http://lfcps.org/andre.html
http://doi.org/10.1007/s10703-016-0241-z
http://lfcps.org/andre.html
https://doi.org/10.1007/978-3-319-63588-0_19
http://lfcps.org/lfcps/

Controller Monitor: Veto Early If Noncompliant
Model α

Offline

ω ν i+1prior state x

posterior state x+Model α

ctrl plant

Model Monitor

Controller Monitor before actuation
posterior state x+

(ω,ν) ∈ [[ctrl]]Semantical:

reachability relation of ctrl

m Theorem
(ω,ν) |= 〈ctrl〉(x = x+)Logical dL:

exists a run of ctrl to
a state where x = x+

⇑ dL proof
(ω,ν) |= F(x ,x+)Arithmetical: check at runtime (efficient)

Theorem (Controller Monitor Correctness) (FMSD’16)
Controller safe and in plant bounds as long as monitor satisfied.

Controller Monitor
Immediate detection of unsafe control before actuation
 Safe execution of unverified implementations

in perfect environments

André Platzer (CMU) LFCPS/19: Verified Models & Verified Runtime Validation LFCPS/19 13 / 16

http://lfcps.org/andre.html
http://doi.org/10.1007/s10703-016-0241-z
http://lfcps.org/andre.html
https://doi.org/10.1007/978-3-319-63588-0_19
http://lfcps.org/lfcps/

Controller Monitor: Veto Early If Noncompliant
Model α

Offline

ω ν i+1prior state x

posterior state x+Model α

ctrl plant

Model Monitor

Controller Monitor before actuation
posterior state x+

(ω,ν) ∈ [[ctrl]]Semantical:

reachability relation of ctrl

m Theorem
(ω,ν) |= 〈ctrl〉(x = x+)Logical dL:

exists a run of ctrl to
a state where x = x+

⇑ dL proof
(ω,ν) |= F(x ,x+)Arithmetical: check at runtime (efficient)

Theorem (Controller Monitor Correctness) (FMSD’16)
Controller safe and in plant bounds as long as monitor satisfied.

Controller Monitor
Immediate detection of unsafe control before actuation
 Safe execution of unverified implementations

in perfect environments

André Platzer (CMU) LFCPS/19: Verified Models & Verified Runtime Validation LFCPS/19 13 / 16

http://lfcps.org/andre.html
http://doi.org/10.1007/s10703-016-0241-z
http://lfcps.org/andre.html
https://doi.org/10.1007/978-3-319-63588-0_19
http://lfcps.org/lfcps/

Outline

Safe despite evolution with disturbance?

i−1 i i+1
Model α ctrl plant

...

turn
predict

Prediction Monitor

“Prediction is very difficult, especially if it’s about the future.” [Nils Bohr]

André Platzer (CMU) LFCPS/19: Verified Models & Verified Runtime Validation LFCPS/19 14 / 16

http://lfcps.org/andre.html
http://lfcps.org/andre.html
https://doi.org/10.1007/978-3-319-63588-0_19
http://lfcps.org/lfcps/

Outline

Safe despite evolution with disturbance?

i−1 i i+1
Model α ctrl plant

...

turn
predict

Prediction Monitor

“Prediction is very difficult, especially if it’s about the future.” [Nils Bohr]

André Platzer (CMU) LFCPS/19: Verified Models & Verified Runtime Validation LFCPS/19 14 / 16

http://lfcps.org/andre.html
http://lfcps.org/andre.html
https://doi.org/10.1007/978-3-319-63588-0_19
http://lfcps.org/lfcps/

Prediction Monitor: Compliance with Disturbance

Model α

Model αModel α

i i+1prior state x

posterior state x+

...

...
Prediction Monitor
before actuation

posterior state x+

ctrl plant

plant

plant of the form
(

x ′ = f (x)&Q
)

time bound t := 0;
(

x ′ = f (x), t′ = 1&Q∧ t≤ ε

)
disturbance t := 0;

(
f(x)−δ ≤ x′ ≤ f(x)+δ , t ′ = 1&Q∧ t ≤ ε

)

states reachable
within time ε

Offline

(i,ν) |= 〈ctrl〉(x = x+∧ [plant]J)

Invariant J implies safety S
(known from safety proof)

Logical dL:
⇑ dL proof

(i,ν) |= F(x ,x+)Arithmetical:

Prediction Monitor with Disturbance
Detect unsafe control before actuation despite disturbance

 Safety in realistic environments

André Platzer (CMU) LFCPS/19: Verified Models & Verified Runtime Validation LFCPS/19 15 / 16

http://lfcps.org/andre.html
http://lfcps.org/andre.html
https://doi.org/10.1007/978-3-319-63588-0_19
http://lfcps.org/lfcps/

Prediction Monitor: Compliance with Disturbance

Model α

Model α

Model α

ω ν i+1prior state x

posterior state x+

...

...
Prediction Monitor
before actuation

posterior state x+

ctrl plant

plant

plant of the form
(

x ′ = f (x)&Q
)

time bound t := 0;
(

x ′ = f (x), t′ = 1&Q∧ t≤ ε

)
disturbance t := 0;

(
f(x)−δ ≤ x′ ≤ f(x)+δ , t ′ = 1&Q∧ t ≤ ε

)

states reachable
within time ε

Offline

(ω,ν) |= 〈ctrl〉(x = x+∧ [plant]J)

Invariant J implies safety S
(known from safety proof)

Logical dL:
⇑ dL proof

(ω,ν) |= F(x ,x+)Arithmetical:

Prediction Monitor with Disturbance
Detect unsafe control before actuation despite disturbance

 Safety in realistic environments

André Platzer (CMU) LFCPS/19: Verified Models & Verified Runtime Validation LFCPS/19 15 / 16

http://lfcps.org/andre.html
http://lfcps.org/andre.html
https://doi.org/10.1007/978-3-319-63588-0_19
http://lfcps.org/lfcps/

Prediction Monitor: Compliance with Disturbance

Model αModel α

Model α

ω ν i+1prior state x

posterior state x+

...

...
Prediction Monitor
before actuation

posterior state x+

ctrl plant

plant

plant of the form
(

x ′ = f (x)&Q
)

time bound t := 0;
(

x ′ = f (x), t′ = 1&Q∧ t≤ ε

)

disturbance t := 0;
(

f(x)−δ ≤ x′ ≤ f(x)+δ , t ′ = 1&Q∧ t ≤ ε

)

states reachable
within time ε

Offline

(ω,ν) |= 〈ctrl〉(x = x+∧ [plant]J)

Invariant J implies safety S
(known from safety proof)

Logical dL:
⇑ dL proof

(ω,ν) |= F(x ,x+)Arithmetical:

Prediction Monitor with Disturbance
Detect unsafe control before actuation despite disturbance

 Safety in realistic environments

André Platzer (CMU) LFCPS/19: Verified Models & Verified Runtime Validation LFCPS/19 15 / 16

http://lfcps.org/andre.html
http://lfcps.org/andre.html
https://doi.org/10.1007/978-3-319-63588-0_19
http://lfcps.org/lfcps/

Prediction Monitor: Compliance with Disturbance

Model αModel α

Model α

ω ν i+1prior state x

posterior state x+

...

...
Prediction Monitor
before actuation

posterior state x+

ctrl

plant

plant

plant of the form
(

x ′ = f (x)&Q
)

time bound t := 0;
(

x ′ = f (x), t′ = 1&Q∧ t≤ ε

)

disturbance t := 0;
(

f(x)−δ ≤ x′ ≤ f(x)+δ , t ′ = 1&Q∧ t ≤ ε

)

states reachable
within time ε

Offline

(ω,ν) |= 〈ctrl〉(x = x+∧ [plant]J)

Invariant J implies safety S
(known from safety proof)

Logical dL:
⇑ dL proof

(ω,ν) |= F(x ,x+)Arithmetical:

Prediction Monitor with Disturbance
Detect unsafe control before actuation despite disturbance

 Safety in realistic environments

André Platzer (CMU) LFCPS/19: Verified Models & Verified Runtime Validation LFCPS/19 15 / 16

http://lfcps.org/andre.html
http://lfcps.org/andre.html
https://doi.org/10.1007/978-3-319-63588-0_19
http://lfcps.org/lfcps/

Prediction Monitor: Compliance with Disturbance

Model αModel α

Model α

ω ν i+1prior state x

posterior state x+

...

...
Prediction Monitor
before actuation

posterior state x+

ctrl

plant

plant

plant of the form
(

x ′ = f (x)&Q
)

time bound t := 0;
(

x ′ = f (x), t′ = 1&Q∧ t≤ ε

)

disturbance t := 0;
(

f(x)−δ ≤ x′ ≤ f(x)+δ , t ′ = 1&Q∧ t ≤ ε

)

states reachable
within time ε

Offline

(ω,ν) |= 〈ctrl〉(x = x+∧ [plant]J)

Invariant J implies safety S
(known from safety proof)

Logical dL:
⇑ dL proof

(ω,ν) |= F(x ,x+)Arithmetical:

Prediction Monitor with Disturbance
Detect unsafe control before actuation despite disturbance

 Safety in realistic environments

André Platzer (CMU) LFCPS/19: Verified Models & Verified Runtime Validation LFCPS/19 15 / 16

http://lfcps.org/andre.html
http://lfcps.org/andre.html
https://doi.org/10.1007/978-3-319-63588-0_19
http://lfcps.org/lfcps/

Prediction Monitor: Compliance with Disturbance

Model αModel α

Model α

ω ν i+1prior state x

posterior state x+

...

...
Prediction Monitor
before actuation

posterior state x+

ctrl

plant

plant

plant of the form
(

x ′ = f (x)&Q
)

time bound t := 0;
(

x ′ = f (x), t′ = 1&Q∧ t≤ ε

)

disturbance t := 0;
(

f(x)−δ ≤ x′ ≤ f(x)+δ , t ′ = 1&Q∧ t ≤ ε

)

states reachable
within time ε

Offline

(ω,ν) |= 〈ctrl〉(x = x+∧ [plant]J)

Invariant J implies safety S
(known from safety proof)

Logical dL:
⇑ dL proof

(ω,ν) |= F(x ,x+)Arithmetical:

Prediction Monitor with Disturbance
Detect unsafe control before actuation despite disturbance

 Safety in realistic environments

André Platzer (CMU) LFCPS/19: Verified Models & Verified Runtime Validation LFCPS/19 15 / 16

http://lfcps.org/andre.html
http://lfcps.org/andre.html
https://doi.org/10.1007/978-3-319-63588-0_19
http://lfcps.org/lfcps/

Outline

1 Learning Objectives

2 Fundamental Challenges with Inevitable Models

3 Runtime Monitors

4 Model Compliance

5 Provably Correct Monitor Synthesis
Logical State Relations
Model Monitors
Correct-by-Construction Synthesis
Controller Monitors
Prediction Monitors

6 Summary

André Platzer (CMU) LFCPS/19: Verified Models & Verified Runtime Validation LFCPS/19 15 / 16

http://lfcps.org/andre.html
http://lfcps.org/andre.html
https://doi.org/10.1007/978-3-319-63588-0_19
http://lfcps.org/lfcps/

Summary

ModelPlex ensures that proofs transfer to real CPS

Validate model compliance

Characterize compliance with model in logic

Prover transforms compliance formula to executable monitor

Provably correct runtime model validation by offline + online proof

i−1 i i+1
Model α ctrl plant

...

Model Monitor
model adequate?

Controller Monitor
control safe?

Prediction Monitor
until next cycle?

André Platzer (CMU) LFCPS/19: Verified Models & Verified Runtime Validation LFCPS/19 16 / 16

http://lfcps.org/andre.html
http://lfcps.org/andre.html
https://doi.org/10.1007/978-3-319-63588-0_19
http://lfcps.org/lfcps/

André Platzer.
Logical Foundations of Cyber-Physical Systems.
Springer, Cham, 2018.
URL: http://www.springer.com/978-3-319-63587-3,
doi:10.1007/978-3-319-63588-0.

Stefan Mitsch and André Platzer.
ModelPlex: Verified runtime validation of verified cyber-physical system
models.
Form. Methods Syst. Des., 49(1-2):33–74, 2016.
Special issue of selected papers from RV’14.
doi:10.1007/s10703-016-0241-z.

Stefan Mitsch and André Platzer.
ModelPlex: Verified runtime validation of verified cyber-physical system
models.
In Borzoo Bonakdarpour and Scott A. Smolka, editors, RV, volume 8734
of LNCS, pages 199–214. Springer, 2014.
doi:10.1007/978-3-319-11164-3_17.

André Platzer.
André Platzer (CMU) LFCPS/19: Verified Models & Verified Runtime Validation LFCPS/19 16 / 16

http://www.springer.com/978-3-319-63587-3
http://dx.doi.org/10.1007/978-3-319-63588-0
http://dx.doi.org/10.1007/s10703-016-0241-z
http://dx.doi.org/10.1007/978-3-319-11164-3_17
http://lfcps.org/andre.html
https://doi.org/10.1007/978-3-319-63588-0_19
http://lfcps.org/lfcps/

A complete uniform substitution calculus for differential dynamic logic.
J. Autom. Reas., 59(2):219–265, 2017.
doi:10.1007/s10817-016-9385-1.

André Platzer (CMU) LFCPS/19: Verified Models & Verified Runtime Validation LFCPS/19 16 / 16

http://dx.doi.org/10.1007/s10817-016-9385-1
http://lfcps.org/andre.html
https://doi.org/10.1007/978-3-319-63588-0_19
http://lfcps.org/lfcps/

	Learning Objectives
	Fundamental Challenges with Inevitable Models
	Runtime Monitors
	Model Compliance
	Provably Correct Monitor Synthesis
	Logical State Relations
	Model Monitors
	Correct-by-Construction Synthesis
	Controller Monitors
	Prediction Monitors

	Summary

