
c© 2012 IEEE. 2012 27th Annual ACM/IEEE Symposium on Logic in Computer Science

The Complete Proof Theory of Hybrid Systems
André Platzer

Computer Science Department
Carnegie Mellon University

Pittsburgh, USA
aplatzer@cs.cmu.edu

Abstract—Hybrid systems are a fusion of continuous dynamical
systems and discrete dynamical systems. They freely combine
dynamical features from both worlds. For that reason, it has
often been claimed that hybrid systems are more challenging
than continuous dynamical systems and than discrete systems.
We now show that, proof-theoretically, this is not the case. We
present a complete proof-theoretical alignment that interreduces
the discrete dynamics and the continuous dynamics of hybrid
systems. We give a sound and complete axiomatization of hybrid
systems relative to continuous dynamical systems and a sound
and complete axiomatization of hybrid systems relative to dis-
crete dynamical systems. Thanks to our axiomatization, proving
properties of hybrid systems is exactly the same as proving
properties of continuous dynamical systems and again, exactly the
same as proving properties of discrete dynamical systems. This
fundamental cornerstone sheds light on the nature of hybridness
and enables flexible and provably perfect combinations of discrete
reasoning with continuous reasoning that lift to all aspects of
hybrid systems and their fragments.

Index Terms—proof theory; hybrid dynamical systems; differ-
ential dynamic logic; axiomatization; completeness

I. INTRODUCTION

Hybrid systems are dynamical systems that combine dis-
crete dynamics and continuous dynamics. They play an im-
portant role, e.g., in modeling systems that use computers
to control physical systems. Hybrid systems feature (iterated)
difference equations for discrete dynamics and differential
equations for continuous dynamics. They, further, combine
conditional switching, nondeterminism, and repetition. The
theory of hybrid systems concluded that very limited classes
of systems are undecidable [4], [6], [16]. Most hybrid systems
research since focused on practical approaches for efficient
approximate reachability analysis for classes of hybrid systems
[3], [7], [13], [27]. Undecidability also did not stop researchers
in program verification from making impressive progress.
This progress, however, concerned both the practice and the
theory, where logic was the key to studying the theory beyond
undecidability [8], [14], [15], [21], [28].

We take a logical perspective, with which we study the
logical foundations of hybrid systems and obtain interesting
proof-theoretical relationships in spite of undecidability. We
have developed a logic and proof calculus for hybrid systems
[23], [25] in which it becomes meaningful to investigate
concepts like “what is true for a hybrid system” and “what
can be proved about a hybrid system” and investigate how
they are related. Our proof calculus is sound, i.e., all it can

prove is true. Soundness should be sine qua non for formal
verification, but is so complex for hybrid systems [7], [27]
that it is often inadvertently forsaken. In logic, we can simply
ensure soundness by checking it locally per proof rule.

More intriguingly, however, our logical setting also enables
us to ask the converse: is the proof calculus complete, i.e., can
it prove all that is true? A corollary to Gödel’s incompleteness
theorem shows that hybrid systems do not have a sound
and complete calculus that is fully effective, because both
their discrete fragment and their continuous fragment alone
are nonaxiomatizable since each can define integer arithmetic
[23, Theorem 2]. But logic can do better. The suitability
of an axiomatization can still be established by showing
completeness relative to a fragment [8], [15]. This relative
completeness, in which we assume we were able to prove
valid formulas in a fragment and prove that we can then
prove all others, also tells us how subproblems are related
computationally. It tells us whether one subproblem dominates
the others. Standard relative completeness [8], [15], however,
which works relative to the data logic, is inadequate for hybrid
systems, whose complexity comes from the dynamics, not the
data logic, first-order real arithmetic, which is decidable [30].

In this paper, we answer an open problem about hybrid
systems proof theory [23]. We prove that differential dynamic
logic (dL), which is a logic of hybrid systems, has a sound
and complete axiomatization relative to its discrete fragment.
This is the first discrete relative completeness result for hybrid
systems.

Together with our previous result of a sound and complete
axiomatization of hybrid systems relative to the continuous
fragment of dL [23], we obtain a complete alignment of the
proof theories of hybrid systems, of continuous dynamical
systems, and of discrete dynamical systems. Even though these
classes of dynamical systems seem to have quite different
intuitive expressiveness, their proof theories actually align
perfectly and make them (provably) interreducible. Our dL
calculus can prove properties of hybrid systems exactly as
good as properties of continuous systems can be proved,
which, in turn, our calculus can do exactly as good as discrete
systems can be proved. Exactly as good as any one of those
subquestions can be solved, dL can solve all others. Relative to
the fragment for either system class, our dL calculus can prove
all valid properties for the others. It lifts any approximation for
the fragment perfectly to all hybrid systems. This also defines

ANDRÉ PLATZER THE COMPLETE PROOF THEORY OF HYBRID SYSTEMS 2

a relative decision procedure for dL sentences, because our
completeness proofs are constructive.

On top of its theoretical value and the full provability
alignment that our new result shows, our discrete complete-
ness result is significant in that—in computer science and
verification—programs are closer to being understood than dif-
ferential equations. Well-established and (partially) automated
machinery exists for classical program verification, which,
according to our result, has unexpected direct applications
in hybrid systems. Completeness relative to discrete systems
increases the confidence that discrete computers can solve
hybrid systems questions at all. Conversely, control theory
provides valuable tools for understanding continuous systems.
Previously, it had been just as hard to generalize discrete
computer science techniques to continuous questions as it has
been to generalize continuous control approaches to discrete
phenomena, let alone to the mixed case of hybrid systems.

Overall, our results provide a perfect link between both
worlds and allow—in a sound and complete, and constructive
way—to combine the best of both worlds. dL allows discrete
reasoning as well as continuous reasoning within one single
logic and proof system. The dL calculus links and transfers
one side of reasoning in a provably perfect (that is sound and
complete) way to the other side. For whatever question about
a hybrid system (or its fragments) a discrete approach is more
natural or promising, dL lifts this reasoning in a perfect way
to continuous systems, and to hybrid systems, and vice versa
for any part where a continuous approach is more useful.

This complete alignment of the proof theories is a funda-
mental cornerstone for understanding hybridness and relations
between discrete and continuous dynamics. In a nutshell, we
show that we can proof-theoretically equate:

“hybrid = continuous = discrete”

II. DIFFERENTIAL DYNAMIC LOGIC

A. Regular Hybrid Programs

We use (regular) hybrid programs (HP) [23] as hybrid
system models. HPs form a Kleene algebra with tests [19].
The atomic HPs are instantaneous discrete jump assignments
x := θ, tests ?χ of a first-order formula1 χ of real arithmetic,
and differential equation (systems) x′ = θ&χ for a continuous
evolution restricted to the domain of evolution described by
a first-order formula χ. Compound HPs are generated from
these atomic HPs by nondeterministic choice (∪), sequential
composition (;), and Kleene’s nondeterministic repetition (∗).
We use polynomials with rational coefficients as terms. HPs
are defined by the following grammar (α, β are HPs, x a
variable, θ a term possibly containing x, and χ a formula
of first-order logic of real arithmetic):

α, β ::= x := θ | ?χ | x′ = θ&χ | α ∪ β | α;β | α∗

The first three cases are called atomic HPs, the last three
compound HPs. These operations can define all hybrid systems

1 The test ?χ means “if χ then skip else abort”. Our results generalize to
rich-test dL, where ?χ is a HP for any dL formula χ (Sect. II-B).

[25]. We, e.g., write x′ = θ for the unrestricted differential
equation x′ = θ& true . We allow differential equation sys-
tems and use vectorial notation. Vectorial assignments are
definable from scalar assignments (and ;).

A state ν is a mapping from variables to R. Hence ν(x) ∈ R
is the value of variable x in state ν. The set of states is denoted
S. We denote the value of term θ in ν by [[θ]]ν . Each HP α is
interpreted semantically as a binary reachability relation ρ(α)
over states, defined inductively by:
• ρ(x := θ) = {(ν, ω) : ω = ν except that [[x]]ω = [[θ]]ν}
• ρ(?χ) = {(ν, ν) : ν |= χ}
• ρ(x′ = θ&χ) = {(ϕ(0), ϕ(r)) : ϕ(t) |= x′ = θ and
ϕ(t) |= χ for all 0 ≤ t ≤ r for a solution ϕ : [0, r]→ S
of any duration r}; i.e., with ϕ(t)(x′)

def
= dϕ(ζ)(x)

dζ (t),
ϕ solves the differential equation and satisfies χ at all
times [23]

• ρ(α ∪ β) = ρ(α) ∪ ρ(β)
• ρ(α;β) = ρ(β) ◦ ρ(α)

• ρ(α∗) =
⋃
n∈N

ρ(αn) with αn+1 ≡ αn;α and α0 ≡ ?true .

We refer to our book [25] for a comprehensive background.
We also refer to [25] for an elaboration how the case r =
0 (in which the only condition is ϕ(0) |= χ) is captured by
the above definition. To avoid technicalities, we consider only
polynomial differential equations, which are all smooth.

B. dL Formulas

The formulas of differential dynamic logic (dL) are defined
by the grammar (where φ, ψ are dL formulas, θ1, θ2 terms, x
a variable, α a HP):

φ, ψ ::= θ1 ≥ θ2 | ¬φ | φ ∧ ψ | ∀xφ | [α]φ

The satisfaction relation ν |= φ is as usual in first-order logic
(of real arithmetic) with the addition that ν |= [α]φ iff ω |= φ
for all ω with (ν, ω) ∈ ρ(α). The operator 〈α〉 dual to [α]
is defined by 〈α〉φ ≡ ¬[α]¬φ. Consequently, ν |= 〈α〉φ iff
ω |= φ for some ω with (ν, ω) ∈ ρ(α). Operators =, >,≤, <,
∨,→,↔,∃x can be defined as usual in first-order logic. A dL
formula φ is valid, written � φ, iff ν |= φ for all states ν.

C. Axiomatization

Our axiomatization of dL is shown in Fig. 1. To highlight
the logical essentials, we present a significantly simplified
axiomatization in comparison to our earlier work [23], which
was tuned for automation. The axiomatization we use here is
closer to that of Pratt’s dynamic logic for conventional discrete
programs [15], [28]. We use the first-order Hilbert calculus
(modus ponens and ∀-generalization) as a basis and allow all
instances of valid formulas of first-order real arithmetic as
axioms. The first-order theory of real-closed fields is decidable
[30]. We write ` φ iff dL formula φ can be proved with dL
rules from dL axioms (including first-order rules and axioms).

Axiom [:=] is Hoare’s assignment rule. Formula φ(θ) is
obtained from φ(x) by substituting θ for x, provided x does
not occur in the scope of a quantifier or modality binding x
or a variable of θ. A modality [α] containing z := or z′ binds

ANDRÉ PLATZER THE COMPLETE PROOF THEORY OF HYBRID SYSTEMS 3

[:=] [x := θ]φ(x)↔ φ(θ)

[?] [?χ]φ↔ (χ→ φ)

[′] [x′ = θ]φ↔ ∀t≥0 [x := y(t)]φ (y′(t) = θ)

[&]
[x′ = θ&χ]φ

↔ ∀t0=x0 [x′ = θ]
(
[x′ = −θ](x0 ≥ t0 → χ)→ φ

)
[∪] [α ∪ β]φ↔ [α]φ ∧ [β]φ

[;] [α;β]φ↔ [α][β]φ

[∗] [α∗]φ↔ φ ∧ [α][α∗]φ

K [α](φ→ ψ)→ ([α]φ→ [α]ψ)

I [α∗](φ→ [α]φ)→ (φ→ [α∗]φ)

C
[α∗]∀v>0 (ϕ(v)→ 〈α〉ϕ(v − 1))

→ ∀v (ϕ(v)→ 〈α∗〉∃v≤0ϕ(v))
(v 6∈ α)

B ∀x [α]φ→ [α]∀xφ (x 6∈ α)

V φ→ [α]φ (FV (φ) ∩BV (α) = ∅)

G
φ

[α]φ

Fig. 1. Differential dynamic logic axiomatization

z (written z ∈ BV (α)). In axiom [′], y(·) is the (unique [32,
Theorem 10.VI]) solution of the symbolic initial value problem
y′(t) = θ, y(0) = x. It goes without saying that variables like
t are fresh in Fig. 1. Axiom [∗] is the iteration axiom. Axiom
K is the modal modus ponens from modal logic [18]. Axiom
I is an induction schema for repetitions. Axiom C, in which v
does not occur in α (written v 6∈ α), is a variation of Harel’s
convergence rule, suitably adapted to hybrid systems over R.
Axiom B is the Barcan formula of first-order modal logic,
characterizing anti-monotonic domains [18]. In order for it to
be sound for dL, x must not occur in α. The converse of B
is provable2 [18, BFC p. 245] and we also call it B. Axiom
V is for vacuous modalities and requires that no free variable
of φ (written FV (φ)) is bound by α. The converse holds, but
we do not need it. Rule G is Gödel’s necessitation rule for
modal logic [18]. Note that, unlike rule G, axiom V crucially
requires the variable condition that ensures that the value of
φ is not affected by running α.

We add the new modular dL axiom [&] that reduces
differential equations with evolution domain constraints to
differential equations without them by checking the evolution
domain constraint backwards along the reverse flow. It checks
χ backwards from the end up to the initial time t0, using that
x′ = −θ follows the same flow as x′ = θ, but backwards. See
Fig. 2 for an illustration. To simplify notation, we assume

2 From ∀xφ → φ, derive [α](∀xφ → φ) by G, from which K and
propositional logic derive [α]∀xφ → [α]φ. Then, first-order logic derives
[α]∀xφ→ ∀x [α]φ, as x is not free in the antecedent.

t

x

χ

revert flow and time x0;
check χ backwards

x′ = θ

t0 = x0 r

x′ = −θ

Fig. 2. “There and back again” axiom [&] checks evolution domain along
backwards flow over time

that the (vector) differential equation x′ = θ in axiom [&]
already includes a clock x′0 = 1 for tracking time. The idea
behind axiom [&] is that the fresh variable t0 remembers the
initial time x0, then x evolves forward along x′ = θ for any
amount of time. Afterwards, φ has to hold if, for all ways of
evolving backwards along x′ = −θ for any amount of time,
x0 ≥ t0 → χ holds, i.e., χ holds at all previous times that are
later than the initial time t0. Thus, φ is not required to hold
after a forward evolution if the evolution domain constraint
χ can be left by evolving backwards for less time than the
forward evolution took.

The following loop invariant rule ind derives from G and
I. The subsequent convergence rule con derives from ∀-
generalization, G, and C (like in C, v does not occur in α):

(ind)
φ→ [α]φ

φ→ [α∗]φ
(con)

ϕ(v) ∧ v > 0→ 〈α〉ϕ(v − 1)

ϕ(v)→ 〈α∗〉∃v≤0ϕ(v)

While this is not the focus of this paper, we note that we
have successfully used a refined sequent calculus variant of the
Hilbert calculus in Fig. 1 for automatic verification of hybrid
systems, including trains, cars, and aircraft; see [23], [25].

The dL calculus is sound, i.e., every dL formula provable
in the dL calculus is valid. That is, � φ implies ` φ. In this
paper, we study the converse question of completeness, i.e.,
to what extent every valid dL formula is provable.

III. CONTINUOUS COMPLETENESS

In this section, we present our result on continuous com-
pleteness, i.e., the fact that the dL calculus is a sound
and complete axiomatization of dL relative to its continuous
fragment. We have shown that our previous dL calculus
[23] is a sound and complete axiomatization of dL relative
to the continuous fragment (FOD). FOD is the first-order
logic of differential equations, i.e., first-order real arithmetic
augmented with formulas expressing properties of differential
equations, that is, dL formulas of the form [x′ = θ]F with
a first-order formula F . We prove that our simplified dL
axiomatization in Fig. 1 is sound and complete relative to
FOD (the proof is in [26]):

Theorem 1 (Continuous relative completeness of dL). The
dL calculus is a sound and complete axiomatization of hybrid
systems relative to FOD, i.e., every valid dL formula can be
derived from FOD tautologies.

Axioms B and V are not needed for the proof of Theorem 1;
see [26]. They are included in Fig. 1 for subsequent results.

ANDRÉ PLATZER THE COMPLETE PROOF THEORY OF HYBRID SYSTEMS 4

←−
∆ [x′ = f(x)]F ← ∃h0>0∀0<h<h0 [(x := x+ hf(x))

∗
]F (closed F)

−→
∆ [x′ = f(x)]F → ∀t≥0 ∃h0>0∀0<h<h0 [(x := x+ hf(x))

∗
](t ≥ 0→ F) (open F)

←→
∆ [x′ = f(x)]F ↔ ∀t≥0 ∃ε>0 ∃h0>0∀0<h<h0 [(x := x+ hf(x))

∗
]
(
t ≥ 0→ ¬Uε(¬F)

)
(open F)

Fig. 3. Discrete Euler approximation axioms (for f ∈ C2, fresh variables,
−→
∆ and

←→
∆ assume t′ = −1)

IV. DISCRETE COMPLETENESS

In this section, we study discrete completeness, by which
we mean that the dL calculus is a sound and complete axiom-
atization of dL relative to its discrete fragment. We denote
the discrete fragment of dL by DL, i.e., the fragment without
differential equations (for our purposes we can restrict DL to
the operators :=, ∗ and allow either ; or vector assignments).
The axiomatization in Fig. 1 is not complete relative to the
discrete fragment, since not all differential equations even
have closed-form solutions, let alone polynomial solutions.
We develop an extension of the dL calculus that is complete
relative to the discrete fragment by adding one axiom for
differential equations. First, we consider the case of open post-
conditions (Sect. IV-A), then extend it to closed postconditions
(Sect. IV-B), and then to general dL formulas with nested
quantifiers and modalities (Sect. IV-C).

A. Open Discrete Completeness

Axioms like [′] that require solutions for differential equa-
tions cannot be complete, because most differential equations
do not have closed-form solutions. We can understand proper-
ties of differential equations from a discrete perspective using
discretizations of the dynamics. The question is why that
should be complete or even sound. All discretization schemes
have errors. Could errors for difficult cases become so large
that we cannot obtain conclusive evidence? Or could errors
be so unmanageable that they may mislead us into concluding
incorrect properties from approximations? Our first step for an
answer is for open postconditions.

The way to understand continuous dynamics as discrete
dynamics is by discrete approximation. The discrete HP
(x := x+ hf(x))

∗ represents an Euler discretization of the
continuous HP x′ = f(x) with step size h > 0. What is
the relationship of the DL formula [(x := x+ hf(x))

∗
]F to

the FOD formula [x′ = f(x)]F ? If the discrete approxima-
tion leaves F , we cannot conclude that x′ = f(x) leaves F ,
because the discretization might leave F only due to approx-
imation errors. So we could try a smaller step size h

2 . But
even if we ultimately find a discrete approximation that never
leaves F , we still cannot conclude that x′ = f(x) will stay
in F , again because of approximation errors. Instead, axiom←−
∆ in Fig. 3 quantifies over all sufficiently fine discretizations
h. For reasons that we illustrate below, axiom

−→
∆ quantifies

over all time bounds t and axiom
←→
∆ quantifies over a small

approximation tolerances ε. Note the nontrivial similarities
when comparing the axioms in Fig. 3 with axiom [′]. The
difference is that axiom [′] requires a closed-form solution

y(t), whereas the axioms in Fig. 3 use a repeated assignment
with the right-hand side f(x) of the differential equation. The
latter is appropriate thanks to the extra quantifiers for the
approximations. The conditions of the axioms in Fig. 3 about
F being open/closed can be axiomatized and are decidable
over real-closed fields [30].

Theorem 2 (Soundness of approximation). The approximation
axioms in Fig. 3 are sound. To simplify notation, we assume
that the (vector) differential equation x′ = f(x) in

−→
∆ and

←→
∆

already includes an extra clock t′ = −1.

Before we prove Theorem 2, we develop a number of
auxiliary results and consider examples that demonstrate why
the conditions for the axioms in Fig. 3 are necessary. For a
set S ⊆ Rn and a number ε > 0 we denote the open set
{x : ‖x− y‖ < ε for a y ∈ S} around S by Uε(S). Uε(S) is
{x : ‖x− y‖ ≤ ε for a y ∈ S}. For a logical formula F with
the free variable (vector) x and a term ε we define the formula
representing the ε-neighborhood around F as

Uε(F)
def≡ ∃y (‖x− y‖ < ε ∧ F (y))

The logical formula Uε(F) is indeed true for exactly those
values of x that are within distance <ε from a y satisfying
F . Before we explain the crucial equivalence axiom

←→
∆ , we

first explain the simpler axioms
←−
∆ and

−→
∆ , which only have

an implication in one direction, not a bi-implication.
Axiom

←−
∆ is sound for closed F . Axiom

←−
∆ is incomplete,

however, since the following valid closed property is not
provable by

←−
∆ , as no approximation, however small h is,

works for all time horizons t (see Fig. 4 for an illustration):

x2 + y2 ≤ 1.1→ [x′ = y, y′ = −x]x2 + y2 ≤ 1.1

For completeness of approximation schemes, the reverse im-
plication axiom

−→
∆ , thus, only states the existence of a step

size h0 for each time bound t. Axiom
←−
∆ alone is insufficient

for another reason, because it would be unsound for open F ,
since the following formula is invalid (Fig. 4):

x = 1 ∧ y = 0→ [x′ = y, y′ = −x](x ≤ 0→ x2 + y2 > 1)

All Euler approximations stay in x2 + y2 > 1, e.g., when
x ≤ 0, but the dynamics only remains inside its closure
x2 + y2 ≥ 1. For the same reason, the converse of

−→
∆ would

be unsound for open F , and, thus, is insufficient. For closed F ,
instead, the converse of

−→
∆ is sound and can be derived from←−

∆ and simple extra arguments. Unlike its converse, axiom
−→
∆

itself, however, would not be sound for closed F , because

ANDRÉ PLATZER THE COMPLETE PROOF THEORY OF HYBRID SYSTEMS 5

-10 -5 5
x

-5

5

10

y

2 4 6 8 10 12
t

-10

-5

5

10

x y

Fig. 4. (top) Dark circle shows true solution, light line segments show Euler
approximation for h = 1

4
(bottom) Dark true bounded trigonometric solution

and Euler approximation in lighter colors with increasing errors over time t

no approximation for the following valid formula stays in
x2 + y2 = 1 for any positive duration:

x2 + y2 = 1→ [x′ = y, y′ = −x]x2 + y2 = 1

This property only holds in the limit case that defines the
solution of the differential equation and does not hold for any
approximation with piecewise polynomial functions. Sound-
ness of axiom

−→
∆ implies, however, that the converse of

−→
∆

can completely prove by approximation that a system does
not leave the closure F of a postcondition, provided the true
dynamics never even leaves its interior

◦
F . The above examples

show, however, that this pair of axioms is incomplete, because
they do not align and only prove a weaker closed property and
need a stronger open assumption.

To handle properties of differential equations by approxi-
mation schemes more completely, we use axiom

←→
∆ , instead,

which, for each time bound t, in addition, quantifies univer-
sally over a small tolerance ε that the discrete approximation
tolerates around the reachable states without violating F
(as reflected in ¬Uε(¬F)). It is this nesting of quantifiers
where

←−
∆ and

−→
∆ “meet” in the sense that both directions of

the implication hold. The equivalence axiom
←→
∆ completely

handles open F . But there are valid properties with closed
postconditions F that are still not provable just by

←→
∆ . The

following formula is valid (e.g., provable by a differential

invariant [24]):

x2 + y2 ≤ 1→ [x′ = y, y′ = −x]x2 + y2 ≤ 1 (1)

Unfortunately, no Euler approximation for the dynamics, how-
ever small h is, satisfies x2 + y2 ≤ 1 for any duration t > 0;
see Fig. 4 for an illustration. The otherwise (i.e., using

←→
∆)

provable open property

x2 + y2 < 1.1→ [x′ = y, y′ = −x]x2 + y2 < 1.1

illustrates that
←→
∆ would be incomplete if we inverted the

order of the quantifiers in
←→
∆ to be ∃ε>0 ∀t≥0 . Such time-

uniform approximations are rare. Our approach, instead, uses
“proof-uniform” approximations, i.e., one proof for all t, not
one value ε for all t. We will answer the question to what
extent our approach can always work.

To justify
←→
∆ , we use an estimate of the global error of

Euler approximations in a neighborhood of the solution [29,
Theorem 7.2.2.3]. For the sake of a self-contained presenta-
tion, we develop a proof of Theorem 3 in [26].

Theorem 3 (Global error). Let f ∈ C2, x̂0 ∈ Rn, and x a
solution on [0, t] of x′ = f(x), x(0) = x̂0. Let f be Lipschitz-
continuous with Lipschitz-constant L on UE(x([0, t])) for
some E > 0. Then there is an h0 > 0 such that for all h
with 0 < h ≤ h0 and all n ∈ N with nh ≤ t, the sequence
x̂n+1 = x̂n + hf(x̂n) satisfies:

‖x(nh)− x̂n‖ ≤ h

2
max
ζ∈[0,t]

‖x′′(ζ)‖ e
Lt − 1

L

Note that we do not need to know the Lipschitz-constant
L for our approach, only that it exists, and, in fact, only that
it exists locally, which is the case for all C1 functions, e.g.,
polynomials.

The following classical results are proved in [26].

Lemma 4 (Continuous distance). For a set S ⊆ Rn distance
d(·, S) : Rn → R;x 7→ infy∈S ‖x− y‖ is a continuous map.

Lemma 5. Let K ⊆ F a compact subset of an open set F .
Then infx∈K d(x, F {) > 0 for the complement F { of F .

Equipped with this prelude of lemmas and cautionary ex-
amples we proceed to prove Theorem 2 one rule at a time.

Proof of Theorem 2:
←−
∆: Assume the antecedent is true

in a state ν. In order to show that the succedent is true
in ν, consider any solution x(·) of x′ = f(x) with initial
value according to ν. Let t ≥ 0 be the duration of x(·).
We need to show that x(t) |= F . Since f is C1, it is locally
Lipschitz continuous and, thus, Lipschitz continuous on every
compact subset (these conditions are equivalent for locally
compact spaces). Fix an arbitrary E > 0. As a continu-
ous image of the compact x([0, t])× UE(0) under addition,
U

def
= UE(x([0, t])) =

⋃
q∈x([0,t]) UE(q) is compact. See Fig. 5

for a partial illustration. Let L a Lipschitz constant for f on
U . Consider any small h (and obeying 0 < h < h0 according
to the antecedent). Let x̂n be the value of variable x after n

ANDRÉ PLATZER THE COMPLETE PROOF THEORY OF HYBRID SYSTEMS 6

2 4 6 8

-20

20

40

60

80

100

Fig. 5. Dark partial covering for dark solution and light partial covering for
light approximation

iterations of the discrete program in the antecedent of
←−
∆ . By

Theorem 3, for sufficiently small h with nh ≤ t:

‖x(nh)− x̂n‖ ≤ h max
ζ∈[0,t]

‖x′′(ζ)‖ e
Lt − 1

2L︸ ︷︷ ︸
C(t)

< ε (2)

The last inequality holds on [0, t] for all sufficiently small
h > 0 for the following reason. Since f is C1, the solution3

x(·) is C2. Given the initial state ν, the remaining factor C(t)
is a constant depending on t, because the continuous function
x′′(ζ) is bounded on the compact set [0, t]. Here we need that
L for x′ = f(x) is determined by ν and t and the choice of
E. In short, for any 0 < ε < E inequality (2) holds for all
sufficiently small h > 0 (also satisfying h < h0) and all n
with nh ≤ t. Consider n def

= b thc, which satisfies nh ≤ t but
(n + 1)h > t. By mean-value theorem, there is a ξ ∈ (nh, t)
such that

‖x(t)− x(nh)‖ = ‖x′(ξ)‖(t− nh) = ‖f(x(ξ))‖(t− nh)

≤ max
ξ∈[0,t]

‖f(x(ξ))‖︸ ︷︷ ︸
=:D(t)

(t− nh) < ε (3)

The last inequality holds for all sufficiently small h > 0

(with h < h0), because nh→ t as h→ 0 with n def
= b thc and

D(t) is a constant. Constant D(t) is determined by t and
the initial state for x′ = f(x) corresponding to ν, because
the continuous function f(x(ξ)) is bounded on the compact
set [0, t]. Combining (2) with (3) we obtain that for any
0 < ε < E and all sufficiently small h > 0 (also still with
h < h0) and n def

= b thc:

‖x(t)− x̂n‖ ≤ ‖x(t)− x(nh)‖ + ‖x(nh)− x̂n‖ < 2ε (4)

By antecedent, x̂n |= F for all these h and n. By (4), there,
thus, is a sequence of x̂n in F that converges to x(t) as h→ 0.
Thus, x(t) |= F , because F is closed.

3x solves x′ = f(x), hence x ∈ C . So the composition x′ = f(x) is
continuous, hence, x ∈ C1. Yet, then again the composition x′ = f(x) is
C1, because f ∈ C1. Henceforth, x ∈ C2.

−→
∆ : Assume [x′ = f(x)]F is true in a state ν, which

fixes the initial state of the differential equation. Accord-
ing to Picard-Lindelöf [32, Theorem 10.VI], let x(·) be the
unique solution (of maximal duration) of x′ = f(x) start-
ing with the initial value corresponding to ν. Consider any
duration t ≥ 0 for which x(·) is defined. By assumption,
the compact set x([0, t]) lies in the region where F is
true, which is open. Thus Lemma 5 implies that there is
a ε1

def
= infq∈x([0,t]) d(q, F {) > 0 so that the open ε1 ball

around each point of x([0, t]) is still in F . Here, F { is
the region of states q with q 6|= F . Fix any 0 < E < ε1.
Then U

def
= UE(x([0, t])) is in F by construction and, again,

compact. Part of this construction is illustrated in Fig. 5. Let
L be a Lipschitz constant for f on U . Now (2), which follows
from Theorem 3, implies for sufficiently small h with nh ≤ t,
that ‖x(nh)− x̂n‖ < E. Thus, x̂n |= F for sufficiently small
h with nh ≤ t. Thus,

∃h0>0 ∀0<h<h0 [(x := x+ hf(x))
∗
](t ≥ 0→ F)

is true in ν where the initial time horizon t was arbitrary.
Recall that the decreasing clock t′ = −1 was assumed to be
part of the differential equation x′ = f(x) for simplicity. Thus,
nh ≤ t iff, after the loop, t ≥ 0 holds. Note that h0 depends
on t. Relation (4) relates different points in time and bounds
the maximum difference of solution x(·) and its discrete
approximation x̂n when they exist for different durations by
choosing sufficiently small h.←→

∆ : First, like in the proof for axiom
−→
∆ , we assume that

ν |= [x′ = f(x)]F and, using that F is open, conclude that
UE(x([0, t])) is in F for an E > 0 that depends on ν and t.
Thus (recall that t is a decreasing clock with t′ = −1):

ν |= [x′ = f(x)]
(
t ≥ 0→ ∀z (‖z − x‖ < E → F (z))

)
(5)

By (2) we conclude for arbitrary 0 < ε < E
2 and sufficiently

small h with nh ≤ t that ‖x(nh)− x̂n‖ < ε. Thus,

‖x(nh)− z‖ ≤ ‖x(nh)− x̂n‖ + ‖x̂n − z‖ < 2ε ≤ E

for all z with ‖x̂n − z‖ < ε. Hence, F (z) holds by (5). Let
νn the state reached after n iterations of the loop in

←→
∆ , then

νn |= t ≥ 0→ ∀z (‖z − x̂‖ < ε→ F (z)), as νn |= t ≥ 0 iff
ν |= nh ≤ t, since t is a decreasing clock. Soundness of the
“→” direction of

←→
∆ follows with the respective choice ε def

= E
2

for each t and ν.
The converse “←” direction of

←→
∆ follows from the sound-

ness of axiom
←−
∆ using that ¬Uε(¬F), which is equivalent to

∀z (‖z− x‖ < ε→ F (z)), is closed since the union Uε(S) is
open for any S. The proof follows by observing that, for each
time bound t > 0, the region t≥0 → ¬Uε(¬F) is closed for
the purpose of

←→
∆ , because the solution x(·) cannot leave a

closed region on a compact time interval [0, t] (whose image is
compact) unless it already leaves it on [0, t). It is easy to derive
this direction formally from

←−
∆ with corresponding arithmetic.

To prove Theorem 2, one could simply try a finite covering
of the open balls for domain U , which exists by compactness

ANDRÉ PLATZER THE COMPLETE PROOF THEORY OF HYBRID SYSTEMS 7

of x([0, t]). The ε neighborhoods of all points of an arbitrary
finite covering, however, are not guaranteed to remain within
F , see Fig. 5 at t ≈ 6.

B. Closed Discrete Completeness

Axiom
←→
∆ handles open postconditions of differential equa-

tions but not closed postconditions. Even though the property
in (1) is a closed region and not provable using

←→
∆ alone, this

property and other closed F are still provable indirectly using
dL axioms together with

←→
∆ . We need the following formula

that we derive4 when no free variable of φ is bound in α

(V∨) φ ∨ [α]ψ ↔ [α](φ ∨ ψ)

Proposition 6. For every (topologically) closed F , the follow-
ing formula is provable in dL:

(Ů) [x′ = f(x)]F ↔ ∀ε̌>0 [x′ = f(x)]Uε̌(F)

Proof: For a set S ⊆ Rn we denote its (topological)
closure by S. Since Rn has a regular topology:

x ∈ S ⇐⇒ ∀∀ε̌>0 ∃∃y ∈ S ‖x− y‖ < ε̌

⇐⇒ ∀∀ε̌>0 Uε̌(x) ∩ S 6= ∅
⇐⇒ ∀∀ε̌>0 x ∈ Uε̌(S)

⇐⇒ x ∈
⋂
ε̌>0

Uε̌(S)

Set S is closed iff S = S, i.e., iff S =
⋂
ε̌>0 Uε̌(S). Since F

is closed, the following equivalence is valid, hence, provable
in real arithmetic

F ↔ ∀ε̌>0Uε̌(F) i.e., F ↔ ∀ε̌ (¬(ε̌>0) ∨ Uε̌(F))

Since ε̌ does not occur in the dynamics, both sides of Ů are,
thus, equivalent using B and V∨.

With an extra quantifier, Ů transforms closed postconditions
to open postconditions, which

←→
∆ handles. Recall that

←−
∆ also

handles closed postconditions, but, unlike
←→
∆ together with Ů ,

axiom
←−
∆ cannot prove them all.

C. Discrete Completeness of dL∆ = dL+
←→
∆

Locally closed postconditions (conjunctions O ∧ C of a
closed C and an open O) are handled in a sound and complete
way when combining

←→
∆ ,Ů , and the following formula derived

from K [18, K3 p. 28]

([]∧) [α](φ ∧ ψ)↔ [α]φ ∧ [α]ψ

One missing case is where postcondition F is a union O∨C
of an open O and a closed C. We generalize the idea behind
Proposition 6 to this case.

4 “→”: Trivially, (φ ∨ [α]ψ)→ (φ ∨ [α]ψ), from which V derives (φ ∨
[α]ψ) → ([α]φ ∨ [α]ψ). Thus, (φ ∨ [α]ψ) → [α](φ ∨ ψ) derives by a
consequence [18, K4 p. 31] of G.
“←”: Conversely, K derives [α](¬φ→ ψ)→ ([α]¬φ→ [α]ψ), from which
V derives [α](¬φ→ ψ)→ (¬φ→ [α]ψ).

Proposition 7. For every (topologically) open O and (topo-
logically) closed C, the following formula is provable in dL:

(Ǔ) [x′ = f(x)](O ∨ C)↔ ∀ε̌>0 [x′ = f(x)](O ∨ Uε̌(C))

Proof: As in the proof of Proposition 6, C is closed and
C ↔ ∀ε̌>0Uε̌(C) valid, and, thus, provable in real arithmetic.
Since ε̌ is fresh, we, thus, derive equivalence of both sides of
Ǔ using V∨ and B

[x′ = f(x)](O ∨ C) ≡ [x′ = f(x)](O ∨ ∀ε̌>0Uε̌(C))

≡ [x′ = f(x)]∀ε̌>0 (O ∨ Uε̌(C))

≡ ∀ε̌>0 [x′ = f(x)](O ∨ Uε̌(C))

Like Ů , Ǔ reduces non-open postconditions to (quantified)
open postconditions, which we then want to prove by

←→
∆ . Can

we prove all resulting formulas when they are valid? More
generally, can we prove all valid dL formulas from discrete DL
this way, even if they have nested quantifiers and modalities?

The dL calculus is complete relative to the continuous
fragment (Theorem 1), but incomplete relative to the discrete
fragment. We study the dL calculus in Fig. 1 enriched with
the approximation axiom

←→
∆ in Fig. 3 and denote this calculus

by dL∆. The dL∆ calculus inherits completeness relative to
the continuous fragment from Theorem 1. We now prove that
dL∆ is a sound and complete axiomatization of dL relative to
discrete DL, i.e., every valid dL formula can be proved in the
dL∆ calculus from valid DL formulas.

In particular, we need to prove that dL can express all
required invariants and variants, and the resulting formulas
with all their nested quantifiers, repetitions, assignments, dif-
ferential equations and so on are provable in the dL∆ calculus
from valid DL facts. This would be a tricky proof. Instead,
we prove completeness in an unusual way. We leverage the
fact that we have already proved dL to be complete relative
to the continuous fragment FOD in Theorem 1. Thus, every
valid dL formula can be proved in the dL calculus (and the
dL∆ calculus) from valid FOD formulas. FOD is, in a sense,
farthest away from dL∆, because it only involves differential
equations, which is precisely what is missing in DL. But by
basing our proof on Theorem 1, we can piggyback on its proof
how proofs about repetitions and interactions of discrete and
continuous dynamics reduce in a sound and complete way
to FOD formulas. So we only need to prove the remaining
step that dL∆ can prove all valid FOD formulas from DL
tautologies, which is significantly easier than having to worry
about all formulas of dL.

Theorem 8 (Discrete relative completeness of dL∆). The dL∆

calculus is a sound and complete axiomatization of hybrid
systems relative to its discrete fragment DL, i.e., every valid
dL formula can be derived from DL tautologies.

Proof: Theorems 1 and 2 show that the dL∆ calculus
is sound. We need to show that the dL∆ calculus can prove
all valid dL formulas from instances of DL tautologies. By
Theorem 1, dL is complete relative to its continuous fragment,

ANDRÉ PLATZER THE COMPLETE PROOF THEORY OF HYBRID SYSTEMS 8

i.e., elementary properties of differential equations in FOD.
Consequently, all valid dL formulas can be proved in the dL
(and dL∆) calculus from instances of valid FOD formulas. All
that remains to be shown is that we can then prove all those
valid FOD formulas from valid formulas of discrete DL in the
dL∆ calculus. Consider any valid FOD formula φ. We proceed
by induction on the structure of φ and show that dL∆ can
(provably) translate φ into an equivalent DL formula φ# (with
the same free variables), which can be proved by assumption.
Observe that the construction of φ# from φ is effective.

1) When φ is a (valid) formula of first-order real arithmetic,
then φ# def≡ φ is already in DL and provable by
assumption. First-order real arithmetic is even decidable
by quantifier elimination [30].

2) When φ is of the form [x′ = f(x)]F with a first-
order (or semialgebraic) formula F of real arithmetic5,
then, by a standard boolean argument for normal forms
applied to semialgebraic sets obtained by quantifier
elimination [30], F is provably equivalent to a formula
of the form

m∧
i=1

∨
j

pi,j > 0 ∨
∨
k

qi,k ≥ 0


with polynomials pi,j and qi,k. As a preimage of an
open set, the set {x ∈ Rn : pi,j(x) > 0} is an open set,
since pi,j is a continuous function. Dually, the set where
qi,k ≥ 0 is a closed set, because it is the complement of
the open set where −qi,k > 0. As a union of open sets,

the set where Oi
def≡
∨
j pi,j > 0 holds is open. As a finite

union of closed sets, the set where Ci
def≡
∨
k qi,k ≥ 0

holds is closed. This gives the following (provable)
equivalence:

` F ↔
m∧
i=1

(Oi ∨ Ci)

Formula []∧, which derives from K, thus, derives

` φ↔
m∧
i=1

[x′ = f(x)](Oi ∨ Ci)

With m uses of Ǔ , we derive

` φ↔
m∧
i=1

∀ε̌>0 [x′ = f(x)](Oi ∨ Uε̌(Ci))

Since, for ε̌ > 0, each Oi ∨ Uε̌(Ci) is open for every
i, we, therefore, derive with m uses of axiom

←→
∆ that

` φ↔ φ# where

φ# def≡
m∧
i=1

∀ε̌>0ψ(Oi ∨ Uε̌(Ci))

By ψ(Oi ∨ Uε̌(Ci)) we denote the DL formula in the
right-hand side of axiom

←→
∆ with Oi ∨ Uε̌(Ci) in place

5 We can assume F to be semialgebraic, because, by Theorem 1, FOD
does not need nested modalities since it has quantifiers.

of F . Thus, ` φ↔ φ# is provable in the dL∆ calculus,
φ# is in DL, and, thus, provable by assumption.

3) When φ is of the form [x′ = f(x) &χ]F , then it is by
axiom [&] provably equivalent to a formula without evo-
lution domain restrictions, which is structurally simpler
and, thus, provable from DL by induction hypothesis.

4) When φ is of the form ¬ψ, then, by induction hypothe-
sis, the simpler formula ψ is provably equivalent to the
DL formula ψ#. This equivalence ψ ↔ ψ# is provable
in dL∆ by induction hypothesis. Consequently, φ is (in
dL∆) provably equivalent to φ# def≡ ¬(ψ#), which is a
DL formula and, thus, provable by assumption.

5) When φ is of the form φ1 ∧φ2, then φ is provable from
DL by induction hypothesis, because both φ1 and φ2 can
be turned into DL formulas φ#

1 and φ#
2 , respectively,

with provable φi ↔ φ#
i . Thus, φ1 ∧ φ2 ↔ φ#

1 ∧ φ
#
2 is

provable in dL∆.
6) When φ is of the form ∀xψ, then, by induction hypoth-

esis, ψ is provably equivalent to a DL formula ψ#, i.e.,
ψ ↔ ψ# is provable in dL∆. Thus, ∀xψ is, by congru-
ence, provably equivalent to φ# def≡ ∀x (ψ#), which is a
DL formula and, thus, provable by assumption.

As a corollary to this proof and Lemma 16 in the long
version [26], we obtain another interesting result relating the
expressiveness of the discrete and continuous fragments of dL.

Theorem 9 (dL equi-expressibility). The logic dL is express-
ible in FOD and in DL: for each dL formula φ there is a
FOD formula φ[that is equivalent, i.e., � φ↔ φ[and a DL
formula φ# that is equivalent, i.e., � φ↔ φ#. The converse
holds trivially. Furthermore, the construction of φ[and φ# is
effective.

The proof of Theorem 8 and its base Theorem 1 and the
other proofs in this section are constructive. Hence, there is
a constructive way of proving dL formulas by systematic re-
duction to discrete program properties. The resulting formulas
may be unnecessarily complicated, because of the way our
proof reduces the completeness of dL∆ relative to DL to
the completeness of dL relative to FOD, which may require
turning dL into continuous FOD and then back into discrete
DL. Still, the proof is constructive and shows an upper bound
on how quantifier alternations increase in the reduction. A
more efficient reduction may be sought in practice. Thanks to
our result, we now know that this reduction is possible at all.

Note that recursive reductions would be flawed. The validity
of dL formulas reduces to that of FOD, which reduces to DL,
which again reduces to FOD etc. But we need an approxima-
tion to handle either fragment, for we cannot otherwise break
this cycle of mutual reductions. This makes approximations
of either fragment (or even several approximations of several
combined fragments) interesting and ensures that they all lift
to full dL and full hybrid systems perfectly in our calculus.

V. RELATIVE DECIDABILITY

Our relative completeness results entail relative decidability
results for free. Since our relative completeness proofs are

ANDRÉ PLATZER THE COMPLETE PROOF THEORY OF HYBRID SYSTEMS 9

constructive and the rules automatable [23], they even define
a relative decision procedure. The proof of relative decidability
rests on the coincidence lemma for dL, which shows that only
the values of free variables of a formula affect its truth-value.

Lemma 10 (Coincidence lemma). If the states ν and ω agree
on all free variables of formula φ, then ν |= φ iff ω |= φ.

Proof: The proof is by a simple structural induction using
the definitions of ν |= · and ρ(·).

Theorem 11 (Relative decidability). Validity of dL sentences
(i.e., formulas without free variables) is decidable relative to
either an oracle for continuous FOD or an oracle for discrete
DL.

Proof: Let φ by a sentence in dL and ν a state. Then
either ν |= φ or ν 6|= φ. Thus, either ν |= φ or ν |= ¬φ. By
coincidence lemma 10, however, ν |= φ iff ω |= φ for arbitrary
ω, because the truth-value of dL formula φ is determined
entirely6 by the value of its free variables, of which there
are none. Consequently, either � φ or � ¬φ. In either case,
Theorems 1 and 8 imply that the respective valid formula is
provable in dL∆ from valid DL (or FOD) formulas.

VI. RELATED WORK

A general overview of hybrid systems and logics can be
found in [3], [9], [13], [25]. Hybrid systems are undecidable
and do not have finite-state bisimulations [2], [16], so abstrac-
tions and approximations are often used. Euler approximations
are standard. Discrete approximations have been considered
many times before [7], [20], [27]. Discretizations have been
used for linear systems [13], to obtain abstractions of frag-
ments of hybrid systems [1], [2], [31], and to approximate
nonlinear systems by hybrid systems [17] or by piecewise lin-
ear dynamics [3] when assuming that error bounds or Lipschitz
constants are given. See [7], [16], [27] for a discussion of
the limits and decidability frontier. These are interesting uses
of approximation. But we use approximations for a different,
proof-theoretical purpose: to obtain a sound and complete
axiomatization relative to properties of discrete programs.

Related approaches do not take a perspective of logic
and proofs. That made it difficult to formulate appropriate
completeness notions, which are natural in logic. Previous
completeness-type arguments for hybrid systems were re-
stricted to bounded model checking [1], continuous systems
[31], discrete linear systems on compact domains that are
assumed to be so robustly save that simulation is enough [10],
or assume the system could be changed without affecting the
property [17]. We, instead, prove full relative completeness of
an expressive logic relative to a small fragment. Our results
identify a more fundamental, proof-theoretical connection be-
tween discrete, continuous, and hybrid dynamics. They are
also not limited to simple properties like reachability or safety
but extend to the full expressivity of dL.

6 The semantics of dL function and predicate symbols is fixed.

Our notion of relative completeness is inspired by relative
completeness for conventional programs, which has been
pioneered by Cook [8] and, for dynamic logic of conventional
discrete programs [28], by Harel et al. [14], [15]. They show
that Hoare’s and Pratt’s program logics are complete relative
to an oracle for the first-order logic of the program data.
Relative completeness is the standard approach to showing
adequacy of calculi for undecidable classical program logics.
Those completeness notions are inadequate for hybrid systems,
however, because the data logic of hybrid systems is real
arithmetic, hence decidable [30]. It is not the data, but the
dynamics proper, that causes incompleteness. We, thus, prove
completeness relative to fragments of the dynamics.

As an alternative to arithmetical relative completeness no-
tions, Leivant [21] considered completeness of discrete pro-
gram logics by alignment with proof schemes in higher-order
logic. It is not clear how that would generalize to a compelling
completeness notion for hybrid systems, whose semantics
intimately depends on arithmetical models that are rich enough
to give differential equations a well-defined semantics. It is an
interesting question, though.

Discrete Turing machines have been encoded into classes of
hybrid [4], [6], [16] or continuous systems [5], [12]. Our proof
works the other way around and handles full hybrid systems
not just discrete Turing machines on a grid. We use discrete
dynamics to understand hybrid dynamics. Our results are also
about provability not encodability.

VII. CONCLUSIONS

We have presented a significantly simplified axiomatization
of differential dynamic logic (dL), our logic for hybrid sys-
tems. We have introduced a new axiom for discrete approxi-
mation of differential equations based on Euler discretizations.
We prove the calculus to be a sound and complete axiomati-
zation of dL relative to the continuous fragment (differential
equations) and also a sound and complete axiomatization
relative to the discrete fragment. Our results show that the
proof theory of hybrid systems aligns completely with that
of continuous systems and with that of discrete systems. Our
axiomatization defines a perfect lifting. Because our proofs are
constructive, our axiomatization even defines relative decision
procedures for dL sentences. Our construction shows how
quantifier alternations increase when interreducing dynamics.
Finally, our simplified axiomatization makes it easier to trans-
fer our completeness results to other verification approaches
just by deriving our axioms.

Our complete alignment shows that any reasoning technique
in one domain has a counterpart in the other. (In)variants,
which are the predominant proof technique for loops, have
differential (in)variants [24] as a counterpart of induction for
differential equations. Our results indicate a high potential
for identifying other practical consequences of our theoretical
alignment. They also revitalize and justify the hope that
control and computer science techniques can work together
to understand hybrid systems and can even work together to
understand purely discrete or purely continuous systems.

ANDRÉ PLATZER THE COMPLETE PROOF THEORY OF HYBRID SYSTEMS 10

In the interest of obtaining a computational approach that
can lift and use quantifier elimination in real-closed fields,
we have phrased our results for the case where differential
dynamic logic is built over polynomial arithmetic. With the
usual caveats about choosing evolution domain constraints
and tests that safeguard against singularities in the domain
of definition (of the functions and their relevant derivatives),
they continue to hold for rational functions. In fact, they even
continue to hold for more general functions as long as those are
sufficiently smooth (C2) on the relevant domains. Unlike with
polynomial and rational functions, it is then more challenging
to handle the resulting arithmetic, however, or could generally
become undecidable. Our discrete relative completeness result
also proves that we can handle properties of hybrid systems
with complicated (non-polynomial or non-rational) functions
in their differential equations to exactly the same extent
to which discrete properties about the arithmetic resulting
from their right-hand sides can be handled. This is another
consequence of our alignment that has been foreshadowed by a
corresponding observation about differential (in)variants [24],
but has now been shown in general.

ACKNOWLEDGMENT

I would like to thank the anonymous reviewers for their
helpful feedback. This material is based upon work supported
by the National Science Foundation under NSF CAREER
Award CNS-1054246.

REFERENCES

[1] R. Alur, T. Dang, and F. Ivancic, “Predicate abstraction for reachability
analysis of hybrid systems,” ACM Trans. Embedded Comput. Syst.,
vol. 5, no. 1, pp. 152–199, 2006.

[2] R. Alur, T. Henzinger, G. Lafferriere, and G. J. Pappas, “Discrete
abstractions of hybrid systems,” Proc. IEEE, vol. 88, no. 7, pp. 971–984,
2000.

[3] E. Asarin, T. Dang, and A. Girard, “Reachability analysis of nonlin-
ear systems using conservative approximation,” in HSCC, ser. LNCS,
O. Maler and A. Pnueli, Eds., vol. 2623. Springer, 2003, pp. 20–35.

[4] E. Asarin and O. Maler, “Achilles and the tortoise climbing up the
arithmetical hierarchy,” J. Comput. Syst. Sci., vol. 57, no. 3, pp. 389–398,
1998.

[5] M. S. Branicky, “Universal computation and other capabilities of hybrid
and continuous dynamical systems,” Theor. Comput. Sci., vol. 138, no. 1,
pp. 67–100, 1995.

[6] F. Cassez and K. G. Larsen, “The impressive power of stopwatches,” in
CONCUR, 2000, pp. 138–152.

[7] P. Collins, “Optimal semicomputable approximations to reachable and
invariant sets,” Theory Comput. Syst., vol. 41, no. 1, pp. 33–48, 2007.

[8] S. A. Cook, “Soundness and completeness of an axiom system for
program verification.” SIAM J. Comput., vol. 7, no. 1, pp. 70–90, 1978.

[9] J. M. Davoren and A. Nerode, “Logics for hybrid systems,” IEEE,
vol. 88, no. 7, pp. 985–1010, July 2000.

[10] A. Girard and G. J. Pappas, “Verification using simulation,” in HSCC,
ser. LNCS, J. P. Hespanha and A. Tiwari, Eds., vol. 3927. Springer,
2006, pp. 272–286.

[11] K. Gödel, “Über formal unentscheidbare Sätze der Principia Mathemat-
ica und verwandter Systeme I,” Mon. hefte Math. Phys., vol. 38, pp.
173–198, 1931.

[12] D. S. Graça, M. L. Campagnolo, and J. Buescu, “Computability with
polynomial differential equations,” Advances in Applied Mathematics,
2007.

[13] C. L. Guernic and A. Girard, “Reachability analysis of hybrid systems
using support functions,” in CAV, ser. LNCS, A. Bouajjani and O. Maler,
Eds., vol. 5643. Springer, 2009, pp. 540–554.

[14] D. Harel, D. Kozen, and J. Tiuryn, Dynamic logic. Cambridge: MIT
Press, 2000.

[15] D. Harel, A. R. Meyer, and V. R. Pratt, “Computability and completeness
in logics of programs (preliminary report),” in STOC. ACM, 1977, pp.
261–268.

[16] T. A. Henzinger, “The theory of hybrid automata.” in LICS. Los
Alamitos: IEEE Computer Society, 1996, pp. 278–292.

[17] T. A. Henzinger, P.-H. Ho, and H. Wong-Toi, “Algorithmic analysis of
nonlinear hybrid systems.” IEEE T. Automat. Contr., vol. 43, pp. 540–
554, 1998.

[18] G. E. Hughes and M. J. Cresswell, A New Introduction to Modal Logic.
Routledge, 1996.

[19] D. Kozen, “Kleene algebra with tests,” ACM Trans. Program. Lang.
Syst., vol. 19, no. 3, pp. 427–443, 1997.

[20] R. Lanotte and S. Tini, “Taylor approximation for hybrid systems.” in
HSCC, ser. LNCS, M. Morari and L. Thiele, Eds., vol. 3414. Springer,
2005, pp. 402–416.

[21] D. Leivant, “Matching explicit and modal reasoning about programs: A
proof theoretic delineation of dynamic logic,” in LICS. IEEE Computer
Society, 2006, pp. 157–168.

[22] M. Morayne, “On differentiability of Peano type functions,” Colloquium
Mathematicum, vol. LIII, pp. 129–132, 1987.

[23] A. Platzer, “Differential dynamic logic for hybrid systems.” J. Autom.
Reas., vol. 41, no. 2, pp. 143–189, 2008.

[24] ——, “Differential-algebraic dynamic logic for differential-algebraic
programs,” J. Log. Comput., vol. 20, no. 1, pp. 309–352, 2010.

[25] ——, Logical Analysis of Hybrid Systems: Proving Theorems for Com-
plex Dynamics. Heidelberg: Springer, 2010.

[26] ——, “The complete proof theory of hybrid systems,” School of
Computer Science, Carnegie Mellon University, Pittsburgh, PA, Tech.
Rep. CMU-CS-11-144, Nov 2011.

[27] A. Platzer and E. M. Clarke, “The image computation problem in hybrid
systems model checking.” in HSCC, ser. LNCS, A. Bemporad, A. Bicchi,
and G. Buttazzo, Eds., vol. 4416. Springer, 2007, pp. 473–486.

[28] V. R. Pratt, “Semantical considerations on Floyd-Hoare logic,” in FOCS.
IEEE, 1976, pp. 109–121.

[29] J. Stoer and R. Bulirsch, Introduction to Numerical Analysis, 3rd ed.
New York: Springer, 2002.

[30] A. Tarski, A Decision Method for Elementary Algebra and Geometry,
2nd ed. Berkeley: University of California Press, 1951.

[31] A. Tiwari, “Abstractions for hybrid systems,” Form. Methods Syst. Des.,
vol. 32, no. 1, pp. 57–83, 2008.

[32] W. Walter, Ordinary Differential Equations. Springer, 1998.

ANDRÉ PLATZER THE COMPLETE PROOF THEORY OF HYBRID SYSTEMS 11

APPENDIX A
EULER APPROXIMATION PROOFS

In this section of the appendix, we prove the lemmas from
Sect. IV. For the sake of a self-contained presentation we
report an explicit yet standard proof of the error bound for
Euler approximation shown in Theorem 3. A more general
result can be found in [29, Theorem 7.2.2.3].

Proof of Theorem 3: By f ∈ C2 and footnote 3 we have
x ∈ C2. Consider the variation x̌n+1 = x̌n + hΦ̌(hn, x̌n) with
x̌0 = x̂0 = x(0) and

Φ̌(ζ, y)
def
=

{
f(y) if ‖y − x(ζ)‖ ≤ E
f
(
x(ζ) + E y−x(ζ)

‖y−x(ζ)‖

)
if ‖y − x(ζ)‖ ≥ E

Like f , Φ̌ is continuous and Lipschitz-continuous in y with
Lipschitz-constant L, but, by construction, for all y ∈ Rn,
because ‖x(ζ) + E y−x(ζ)

‖y−x(ζ)‖ − x(ζ)‖ ≤ E for all ζ ≤ t.
Consider any n ∈ N. By Taylor approximation for x at nh
we know for some ξ ∈ (nh, (n+ 1)h) that

‖x((n+ 1)h)− x̌n+1‖

= ‖x(nh) + x′(nh)h+
x′′(ξ)

2
h2 − x̌n − hΦ̌(nh, x̌n)‖

ODE
= ‖x(nh)− x̌n + (f(x(nh))− Φ̌(nh, x̌n))h+

x′′(ξ)

2
h2‖

= ‖x(nh)− x̌n + (Φ̌(nh, x(nh))− Φ̌(nh, x̌n))h+
x′′(ξ)

2
h2‖

≤ ‖x(nh)− x̌n‖ + Lh‖x(nh)− x̌n‖ +
h2

2
‖x′′(ξ)‖

≤ (1 + Lh)‖x(nh)− x̌n‖ +
h2

2
max
ζ∈[0,t]

‖x′′(ζ)‖

This error bound holds for any n ∈ N starting with error
‖x(0)− x̌0‖ = 0. Thus, recursively, for any n:

‖x(nh)− x̌n‖

≤ (1 + Lh)‖x((n− 1)h)− x̌n−1‖ +
h2

2
max
ζ∈[0,t]

‖x′′(ζ)‖

≤ (1 + Lh)
(
(1 + Lh)‖x((n− 2)h)− x̌n−2‖

+
h2

2
max
ζ∈[0,t]

‖x′′(ζ)‖
)

+
h2

2
max
ζ∈[0,t]

‖x′′(ζ)‖

≤ . . .

≤
n∑
k=0

(1 + Lh)k
h2

2
max
ζ∈[0,t]

‖x′′(ζ)‖

≤ h2

2
max
ζ∈[0,t]

‖x′′(ζ)‖
n∑
k=0

(eLh)k

≤ h2

2
max
ζ∈[0,t]

‖x′′(ζ)‖
∫ n

0

eLhtdt

≤ h2

2
max
ζ∈[0,t]

‖x′′(ζ)‖ e
Lhn − 1

Lh

because 1 + Lh ≤ eLh for Lh ≥ 0, which can be seen by its
power series expansion. The next-to-last inequality follows,
because the sum is a particlar lower Riemann sum of the

integral, since eLhk ≥ 0 is monotone in k. Since 0 ≤ hn ≤ t
is bounded and E > 0, there is an h0 > 0 such that
‖x(nh)− x̌n‖ < E for all 0 ≤ h ≤ h0 and all n ∈ N with
nh ≤ t. Therefore, x̂n = x̌n for these h, n and

‖x(nh)− x̂n‖ ≤ h

2
max
ζ∈[0,t]

‖x′′(ζ)‖ e
Lt − 1

L

Proof of Lemma 4: Write d(x, y)
def
= ‖x− y‖ for

x, y ∈ Rn. d(·, S) satisfies the triangle inequality d(x, S) =
infz∈S d(x, z) ≤ infz∈S(d(x, y)+d(y, z)) = d(x, y)+d(y, S).
For ε > 0 and x, y with d(x, y) < δ := ε we, thus, know
d(x, S) − d(y, S) ≤ d(x, y) < ε. Also, d(y, S) − d(x, S) ≤
d(y, x) = d(x, y) < ε.

Proof of Lemma 5: Suppose infx∈K d(x, F {) = 0. Then
there is a sequence (xn)n∈N ⊆ K with d(xn, F

{)→ 0 as
n→∞. By compactness of K, we can pass to a subsequence
xnk

such that xnk
→ x converges to an x ∈ K as k →∞.

By Lemma 4,

d(lim
k→∞

xnk
, F {) = lim

k→∞
d(xnk

, F {) = lim
n→∞

d(xn, F
{) = 0

Now x ∈ K ⊆ F implies x 6∈ F {. Since d(x, F {) =
infy∈F{ d(x, y) = 0, there is a sequence in F { \ {x} con-
verging to x. Yet, F { is closed, hence x ∈ F {, contradicting
x ∈ F .

ANDRÉ PLATZER THE COMPLETE PROOF THEORY OF HYBRID SYSTEMS 12

APPENDIX B
CONTINUOUS COMPLETENESS PROOF

We will first prove the soundness direction of Theorem 1.
Then it remains to prove the completeness direction of Theo-
rem 1. In this appendix, we present a fully constructive proof
of Theorem 1, following our proof structure from [23]. Thanks
to our significantly simplified axiomatization, the soundness
and relative completeness proofs are much simplified. The
relative completeness proof shows that for every valid dL
formula, there is a finite set of valid FOD formulas from which
it can be derived in the dL calculus.

Proof Outline: The (constructive) proof, which, in full,
is contained in the remainder of this appendix, adapts the
techniques of Cook [8] and Harel [14], [15] to the hybrid
case. The decisive step is to show that every valid property of
a repetition α∗ can be proven by axioms I or C, respectively,
with a sufficiently strong invariant or variant that is expressible
in dL. For this, we show that dL formulas can be expressed
equivalently in FOD, and that valid dL formulas can be derived
from corresponding FOD axioms in the dL calculus. In turn,
the crucial step is to construct a finite FOD formula that
characterizes the effect of unboundedly many repetitive hybrid
transitions and just uses finitely many real variables.

Natural numbers are definable in FOD [23, Theorem 2]. For
the sake of a complete presentation, we recall our proof.

Theorem 12 (Incompleteness). Both the discrete fragment and
the continuous fragment of dL are not effectively axiomatis-
able, i.e., they have no sound and complete effective calculus,
because natural numbers are definable in both fragments.

Proof: We prove that natural numbers are definable
among the real numbers of dL interpretations in both frag-
ments. Then these fragments extend first-order integer arith-
metic such that the incompleteness theorem of Gödel [11]
applies. Gödel’s incompleteness theorem shows that no logic
extending first-order integer arithmetic can have a sound and
complete effective calculus. Natural numbers are definable
in the discrete fragment without continuous evolutions using
repetitive additions:

nat(n)↔ 〈x := 0; (x := x+ 1)
∗〉x = n.

In the continuous fragment, an isomorphic copy of the natural
numbers is definable using linear differential equations:

nat(n)↔ ∃s=0 ∃c=1∃τ=0 〈s′ = c, c′ = −s, τ ′ = 1〉(s = 0∧τ = n).

These differential equations characterize sin and cos as unique

τ

s

π 3π 5π2π 4π

Fig. 6. Characterization of N as zeros of solutions of differential equations

solutions for s and c, respectively. Their zeros, as detected
by τ , correspond to an isomorphic copy of natural numbers,
scaled by π, i.e., nat(n) holds iff n is of the form kπ for
a k ∈ N; see Fig. 6. The initial values for s and c prevent the
trivial solution identical to 0.

Let the FOD formula nat(x) be true iff x is a natural
number. In this section, we abbreviate quantifiers over nat-
ural numbers by ∀x :N φ and ∃x :N φ for ∀x (nat(x)→ φ)
and ∃x (nat(x) ∧ φ). Likewise, we abbreviate quantifiers over
integers, e.g., by ∀x :Z φ.

A. Soundness of dL Calculus

Before we turn to prove completeness, we first prove the
soundness direction of Theorem 1. We state soundness as a
separate theorem, because it is of independent interest:

Theorem 13 (Soundness of dL). The dL calculus is sound,
i.e., every provable formula is valid, i.e., true in all states.

Proof: All axioms of the dL calculus in Fig. 1 are sound,
i.e., all their instances valid.

[:=] Axiom [:=] is sound. For state ν, let ω be the unique
state such that (ν, ω) ∈ ρ(x := θ). That is, ω = ν
except ω(x) = [[θ]]ν . By the Substitution Lemma [25,
Lemma 2.2] for admissible substitutions, ω |= φ iff
ν |= φθx. Thus, ν |= [x := θ]φ iff ν |= φθx.

[?] Axiom [?] is sound. Consider a state ν. If ν |= χ,
then the only transition is (ν, ν) ∈ ρ(?χ), hence,
ν |= [?χ]φ iff ν |= φ, which holds iff ν |= χ→ φ.
If, otherwise, ν 6|= χ, then ?χ allows no transitions
(ν, ω) ∈ ρ(?χ) hence ν |= [?χ]φ holds vacuously
and ν |= χ→ φ holds vacuously, too.

[′] Axiom [′] is sound, because y is the solution (unique
by Picard-Lindelöf [32, Theorem 10.VI]) of the
differential equation y(t)′ = θ with symbolic initial
values y(0) = x. Thus, ν |= [x′ = θ]φ iff φ holds at
all times t ≥ 0 along y(t). That is, ν |= [x′ = θ]φ iff
ν |= ∀t≥0 [x := y(t)]φ.

[&] Axiom [&] is sound, because the right-hand side
checks χ along the reverse flow. Continuous evo-
lution is reversible, i.e., the transitions of x′ = −θ
are inverse to those of x′ = θ. For this, consider
(ν, ω) ∈ ρ(x′ = θ), that is, let ϕ be the unique [23,
Lemma 1] solution of x′ = θ of some duration r
starting in state ν and ending in ω. Then % defined
as %(ζ) = ϕ(r − ζ), is of duration r, starts in ω and
ends in ν. Furthermore, % is a solution of x′ = −θ:

d%(t)(x)

dt
(ζ) =

dϕ(r−t)(x)

dt
(ζ) =

dϕ(u)(x)

du
d(r−t)

dt
(ζ)

=− dϕ(u)(x)

du
(ζ) = −[[θ]]ϕ(ζ) = [[−θ]]ϕ(ζ).

Consequently, all evolutions of [x′ = −θ] follow the
same flow as [x′ = θ], but backwards. The antecedent
of the postcondition tests whether, along the reverse
flow, χ has been true at all times until the starting
time t0; see Fig. 2. The quantifier ∀t0 = x0 . . . ,

ANDRÉ PLATZER THE COMPLETE PROOF THEORY OF HYBRID SYSTEMS 13

which is an abbreviation for ∀t0 (t0 = x0 → . . .),
remembers the initial time x0 in t0. Recall that we
assume x0 to be a clock with the differential equation
x′0 = 1 in the vectorial differential equation x′ = θ
to track time.

[∪] Axiom [∪] is sound. Since ρ(α ∪ β) = ρ(α)∪ ρ(β),
we have that (ν, ω) ∈ ρ(α ∪ β) iff (ν, ω) ∈ ρ(α) or
(ν, ω) ∈ ρ(β). Thus, ν |= [α ∪ β]φ iff ν |= [α]φ and
ν |= [β]φ.

[;] Axiom [;] is sound. Since ρ(α;β) = ρ(β) ◦
ρ(α), we have that (ν, ω) ∈ ρ(α;β) iff (ν, µ) ∈ ρ(α)
and (µ, ω) ∈ ρ(β) for some middle state µ.
Hence, ν |= [α;β]φ iff µ |= [β]φ for all µ with
(ν, µ) ∈ ρ(α). That is ν |= [α;β]φ iff ν |= [α][β]φ.

[∗] Axiom [∗] is sound. Since ρ(α∗) =
⋃
n∈N ρ(αn),

there are two cases: α either repeats for 0 or for 1
or more iterations. Thus ν |= [α∗]φ iff ν |= [α0]φ
and ν |= [α;α∗]φ. Thus, by the soundness of [;],
ν |= [α∗]φ iff ν |= φ and ν |= [α][α∗]φ.

K Let ν |= [α](φ→ ψ) and ν |= [α]φ. Consider any ω
with (ν, ω) ∈ ρ(α). Then, ω |= φ→ ψ and ω |= φ.
Thus, ω |= ψ, implying ν |= [α]ψ, since ω was ar-
bitrary with (ν, ω) ∈ ρ(α).

I Let ν |= [α∗](φ→ [α]φ) and ν |= φ. Since ρ(α∗) =⋃
n∈N ρ(αn), it is enough to show that ν |= [αn]φ

for all n ∈ N. For n = 0, this follows from
ν |= φ. Inductively, from ν |= [αn]φ, we show that
ν |= [αn+1]φ. By soundness of [;], it is enough to
show ν |= [αn][α]φ. For any ω with (ν, ω) ∈ ρ(αn),
we know ω |= φ and need to show ω |= [α]φ. Yet, we
also know ω |= φ→ [α]φ by ν |= [α∗](φ→ [α]φ),
because ρ(αn) ⊆ ρ(α∗).

C Let ν |= [α∗]∀v>0 (ϕ(v)→ 〈α〉ϕ(v − 1)) and
ν |= ∃v ϕ(v). First note that v does not occur
in α, hence its value does not change during
α∗ and does not affect the runs of α∗. We
show ν |= 〈α∗〉∃v≤0ϕ(v) by a well-founded
induction along states ω with (ν, ω) ∈ ρ(α∗)
satisfying ω |= ϕ(v) for some value of v. If
ω |= ϕ(v) for a value of v ≤ 0, we have
ω |= ∃v≤0ϕ(v), which implies ν |= 〈α∗〉∃v≤0ϕ(v)
by (ν, ω) ∈ ρ(α∗). Otherwise, if ω |= ϕ(v) for a
value of v > 0, then by antecedent, we know
ω |= v > 0 ∧ ϕ(v)→ 〈α〉ϕ(v − 1), because
(ν, ω) ∈ ρ(α∗). Thus, ω |= 〈α〉ϕ(v − 1). Thus,
there is a ω1 with (ω, ω1) ∈ ρ(α) such that
ω1 |= ϕ(v − 1). The induction is, thus, well-
founded, because the value of v decreases at least
by 1, which it can only do finitely often down to
the base case v ≤ 0.

B Contrapositively, let ν 6|= [α]∀xφ. Thus, there is a
state ω with (ν, ω) ∈ ρ(α) such that ω 6|= ∀xφ, be-
cause ωdx 6|= φ where ωdx is like ω except for the value
of x, which is d ∈ R in ωdx. Since B assumes x not
to occur in α, its value does not change during α
and does not affect runs of α. Thus, for the state νdx

that is like ν except for the value of x, which is d
in νdx , we have that (νdx, ω

d
x) ∈ ρ(α). Hence, ωdx 6|= φ

implies νdx 6|= [α]φ, i.e., ν 6|= ∀x [α]φ.
V Let ν with ν |= φ. Consider any ω with

(ν, ω) ∈ ρ(α). Since V assumes α not to bind
any variable that is free in φ, the free variables of
φ cannot change their value when passing from
ν to ω, hence ν |= φ iff ω |= φ by Coincidence
Lemma 10.

G Rule G is (globally) sound, which we show by
induction on the structure of the proof. The dL
axioms (and basic axioms of first-order logic and
first-order real arithmetic) are sound, hence, the proof
can only start from valid formulas. Let φ be provable,
and let [α]φ result from φ by application of G. The
proof of φ has one step less than that of [α]φ, hence,
by induction hypothesis, the proof of φ is sound,
which means that φ is valid (� φ). That is, φ is true
in all states ν, which implies that, in particular, φ is
true (ν |= φ) in all states ω for which (ν, ω) ∈ ρ(α).
Thus, [α]φ is valid and its proof sound.

Soundness of the rules and axioms of the first-order Hilbert
calculus are as usual. Modus ponens is obvious and ∀-
generalization follows the pattern of G.

Next, we can turn to proving relative completeness.

B. Characterizing Real Gödel Encodings

As the central device for constructing a FOD formula that
captures the effect of unboundedly many repetitive hybrid
transitions and just uses finitely many real variables, we
prove that a real version of Gödel encoding is definable in
FOD. That is, we give a FOD formula that reversibly packs
finite sequences of real values into a single real number.
The standard prime power constructions for natural number
pairings do not generalize to the reals, because factorization
is not unique.

Observe that a single differential equation system is not
sufficient for defining real pairing functions as their solutions
are differentiable, and yet, as a consequence of Morayne’s
theorem [22], there is no differentiable surjection R → R2,
nor to any part of R2 of positive measure. We show that
real sequences can be encoded nevertheless by chaining the
effects of solutions of multiple (but finitely many!) differential
equations and quantifiers.

Lemma 14 (R-Gödel encoding). The formula at(Z, n, j, z),
which holds iff Z is a real number that represents a Gödel
encoding of a sequence of n real numbers with real value z at
position j (for 1 ≤ j ≤ m), is definable in FOD. For a formula
φ(z) we abbreviate ∃z (at(Z, n, j, z) ∧ φ(z)) by φ(Z

(n)
j).

Proof: The basic idea of the R-Gödel encoding is to
interleave the bits of real numbers as depicted in Fig. 7 (for a
pairing of n = 2 numbers a and b). For defining at(Z, n, j, z),
we use several auxiliary functions to improve readability; see
Fig. 8. Note that these definitions need no recursion. Hence,
as in the notation φ(Z

(n)
j), we can consider occurrences of

ANDRÉ PLATZER THE COMPLETE PROOF THEORY OF HYBRID SYSTEMS 14

∞∑
i=0

ai
2i

= a0.a1a2 . . .

∞∑
i=0

bi
2i

= b0.b1b2 . . .

∞∑
i=0

(
ai

22i−1
+

bi
22i

)
= a0b0.a1b1a2b2 . . .

Fig. 7. Fractional encoding principle of R-Gödel encoding by bit interleaving

at(Z, n, j, z) ↔ ∀i :Z digit(z, i) = digit(Z, n(i− 1) + j) ∧ nat(n) ∧ nat(j) ∧ n > 0
digit(a, i) = intpart(2 frac(2i−1a))
intpart(a) = a− frac(a)

frac(a) = z ↔ ∃i :Z z = a− i ∧ −1 < z ∧ z < 1 ∧ az ≥ 0
2i = z ↔ i ≥ 0 ∧ ∃x∃t (x = 1 ∧ t = 0 ∧ 〈x′ = x ln 2, t′ = 1〉(t = i ∧ x = z))

∨ i < 0 ∧ ∃x∃t (x = 1 ∧ t = 0 ∧ 〈x′ = −x ln 2, t′ = −1〉(t = i ∧ x = z))
ln 2 = z ↔ ∃x ∃t (x = 1 ∧ t = 0 ∧ 〈x′ = x, t′ = 1〉(x = 2 ∧ t = z))

Fig. 8. FOD definition characterizing Gödel encoding of R-sequences in one real number

the function symbols as syntactic abbreviations for quantified
variables satisfying the respective definitions.

The function symbol digit(a, i) gives the ith bit of a ∈ R
when represented with basis 2. For i > 0, digit(a, i) yields
fractional bits, and, for i ≤ 0, it yields bits of the inte-
ger part. For instance, digit(a, 1) yields the first fractional
bit, digit(a, 0) is the least-significant bit of the integer part
of a. The function intpart(a) represents the integer part of
a ∈ R. The function frac(a) represents the fractional part of
a ∈ R, which drops all integer bits. The last constraint in
its definition implies that frac(a) keeps the sign of a (or 0).
Consequently, intpart(a) and digit(a, i) also keep the sign
of a (or 0). Exponentiation 2i is definable using differential
equations, using an auxiliary characterization of the natural
logarithm ln 2. The definition of 2i splits into the case of
exponential growth when i ≥ 0 and a symmetric case of
exponential decay when i < 0.

C. Expressibility and Rendition of Hybrid Program Semantics

In order to show that dL is sufficiently expressive to state
the invariants and variants that are needed for proving valid
statements about loops with axioms I and C, we prove an
expressibility result. We give a constructive proof that the state
transition relation of hybrid programs is definable in FOD,
i.e., there is a FOD formula Sα(~x,~v) characterizing the state
transitions of hybrid program α from the state characterized by
the vector ~x of variables to the state characterized by vector ~v.

For this, we need to characterize hybrid programs equiva-
lently by differential equations in FOD. Observe that the ex-
istence of such characterizations does not follow from results
embedding Turing machines into differential equations [5],
[12], because, unlike Turing machines, hybrid programs are
not restricted to discrete values on a grid (such as Nk) but
work with continuous real values. Furthermore, Turing ma-
chines only have repetitions of discrete transitions on discrete
data (e.g., N). For hybrid programs, in contrast, we have to

characterize repetitive interactions of interacting discrete and
continuous transitions in continuous space (some Rk).

Lemma 15 (Hybrid program rendition). For every hybrid
program α with variables among ~x = x1, . . . , xk, there is a
FOD formula Sα(~x,~v) with variables among the 2k distinct
variables ~x = x1, . . . , xk and ~v = v1, . . . , vk such that

� Sα(~x,~v)↔ 〈α〉~x = ~v

Proof: By the Coincidence Lemma 10, interpretations of
the vectors ~x and ~v completely characterize the input and out-
put states, respectively, as far as α is concerned. These vectors
are finite because α is finite. Vectorial equalities like ~x = ~v
or quantifiers ∃~v are to be understood componentwise. The
program rendition is defined inductively in Fig. 9.

The (vectorial) differential equation case x′ = θ (we avoid
the notation ~x′ = θ) gives FOD formulas; no further reduc-
tion is needed. Evolution along differential equations with
evolution domain restrictions is definable in terms of dif-
ferential equations by the soundness of axiom [&]. Formula
Sx′=θ&χ(~x,~v) is obtained by duality from the right-hand side
of axiom [&]. We add a clock t to x explicitly. Unlike all other
cases, this case in Fig. 9 uses nested FOD modalities, which
can be avoided altogether when using the following equivalent
FOD formula instead (cf. Fig. 2 on p. 3):

∃t∃r
(
t = 0 ∧ 〈x′ = θ, t′ = 1〉(~v = ~x ∧ r = t)∧

∀~x ∀t (~x = ~v ∧ t = r → [x′ = −θ, t′ = −1](t ≥ 0→ χ))
)
.

With a finite formula, the characterization of repeti-
tion Sβ∗(~x,~v) in FOD needs to capture arbitrarily long se-
quences of intermediate real-valued states and the correct tran-
sition between successive states of such a sequence. To achieve
this with first-order quantifiers, we use the real Gödel encoding
from Lemma 14 in Fig. 9 to map unbounded sequences of real-
valued states reversibly to a single real number Z, which can
be quantified over in first-order logic.

ANDRÉ PLATZER THE COMPLETE PROOF THEORY OF HYBRID SYSTEMS 15

Sxi:=θ(~x,~v) ≡ vi = θ ∧
∧
j 6=i

vj = xj

Sx′=θ(~x,~v) ≡ 〈x′ = θ〉~v = ~x

Sx′=θ&χ(~x,~v) ≡ ∃t
(
t = 0 ∧ 〈x′ = θ, t′ = 1〉

(
~v = ~x ∧ [x′ = −θ, t′ = −1](t ≥ 0→ χ)

))
S?χ(~x,~v) ≡ ~v = ~x ∧ χ
Sβ∪γ(~x,~v) ≡ Sβ(~x,~v) ∨ Sγ(~x,~v)

Sβ; γ(~x,~v) ≡ ∃~z (Sβ(~x, ~z) ∧ Sγ(~z,~v))

Sβ∗(~x,~v) ≡ ∃Z ∃n :N
(
Z

(n)
1 = ~x ∧ Z(n)

n = ~v ∧ ∀i :N (1 ≤ i < n→ Sβ(Z
(n)
i , Z

(n)
i+1))

)
Fig. 9. Explicit rendition of hybrid program transition semantics in FOD

Using the program rendition from Lemma 15 to characterize
modalities, we prove that every dL formula can be expressed
equivalently in FOD.

Lemma 16 (dL expressibility). Logic dL is expressible in
FOD: for each dL formula φ there is a FOD formula φ[that
is equivalent, i.e., � φ↔ φ[. The converse holds trivially.

Proof: The proof follows an induction on the structure of
formula φ for which it is imperative to find an equivalent φ[in
FOD. Observe that the construction of φ[from φ is effective.

0) If φ is a first-order formula, then φ[:= φ already is a
FOD formula such that nothing has to be shown.

1) If φ is of the form ϕ ∨ ψ, then by the induction hypoth-
esis there are FOD formulas ϕ[, ψ[such that � ϕ↔ ϕ[

and � ψ ↔ ψ[, from which we can conclude by congru-
ence that � (ϕ ∨ ψ)↔ (ϕ[∨ ψ[), giving � φ↔ φ[by
choosing ϕ[∨ ψ[for φ[. Similar reasoning addresses
the other propositional connectives or quantifiers by
congruence.

2) The case where φ is of the form 〈α〉ψ is a con-
sequence of the characterization of the semantics of
hybrid programs in FOD. Expressibility follows from the
induction hypothesis using the equivalence of explicit
hybrid program renditions from Lemma 15:

� 〈α〉ψ ↔ ∃~v (Sα(~x,~v) ∧ ψ[
~v

~x).

3) The case where φ is [α]ψ is again a consequence of
Lemma 15:

� [α]ψ ↔ ∀~v (Sα(~x,~v)→ ψ[
~v

~x)

Observe that the construction of φ[out of φ is effective.
Also note that all our results continue to hold for rich-test
dL, i.e., the logic where ?χ is a HP for any dL formula χ,
not just for a formula χ of first-order real arithmetic. The
only change in our proof is to use χ[in place of χ in Fig. 9.
Likewise, all our completeness results still hold when allowing
arbitrary dL formulas χ in the evolution domain restrictions χ
of differential equations x′ = θ&χ.

D. First-Order Continuous Relative Completeness

As special cases of Theorem 1, we first prove relative
completeness for first-order assertions about hybrid programs.
These first-order cases constitute the basis for the general
completeness proof for arbitrary formulas of dL. We use the
notation `D φ to indicate that a dL formula φ is derivable in
the dL calculus (Fig. 1) from FOD tautologies. The following
formula derives7 from K by duality

(K〈〉) [α](φ→ ψ)→ (〈α〉φ→ 〈α〉ψ)

Proposition 17 (Relative completeness of first-order safety).
For every hybrid program α and all FOD formulas F,G

� F → [α]G implies `D F → [α]G.

Proof: We generalize the relative completeness proof by
Cook [8] and Harel et al. [15] to dL and follow an induction
on the structure of program α. In the following, IH is short
for the induction hypothesis.

1) The cases where α is of the form x := θ, ?χ, β ∪ γ, or
β; γ are consequences of the soundness of the equiv-
alence rules [;],[?],[∪],[:=]. Whenever their respective
left-hand side is valid, their right-hand side is valid and
of smaller complexity (the programs get simpler), and
hence derivable by IH. Thus, we can derive F → [α]G
by applying the respective rule. We explicitly show the
proof for β; γ as it contains an extra twist.

2) � F → [β; γ]G, which implies � F → [β][γ]G.
By [26], there is a FOD formula G[such
that � G[↔ [γ]G. From that validity we
conclude by IH that `D F → [β]G[is derivable.
Similarly, due to � G[→ [γ]G, we conclude
`D G[→ [γ]G by IH. Extending the latter
by G, we derive `D [β](G[→ [γ]G). Thus, K
derives `D [β]G[→ [β][γ]G. Combining the above
derivations propositionally (cut with [β]G[), we

7 [α](¬ψ → ¬φ) → ([α]¬ψ → [α]¬φ) by K. Thus, propositionally,
[α](¬ψ → ¬φ)→ (¬[α]¬φ→ ¬[α]¬ψ). By duality 〈α〉φ ≡ ¬[α]¬φ, this
is [α](¬ψ → ¬φ) → (〈α〉φ → 〈α〉ψ). Thus, [α](φ → ψ) → (〈α〉φ →
〈α〉ψ) derives as follows. From the propositional tautology (φ → ψ) →
(¬ψ → ¬φ) we derive [α]((φ → ψ) → (¬ψ → ¬φ)) with G, from
which K derives [α](φ→ ψ)→ [α](¬ψ → ¬φ), from which propositional
reasoning yields the result.

ANDRÉ PLATZER THE COMPLETE PROOF THEORY OF HYBRID SYSTEMS 16

derive `D F → [β][γ]G, from which [;] derives
`D F → [β; γ]G.

3) � F → [x′ = θ]G is a FOD formula and hence provable
by assumption.

4) � F → [x′ = θ&χ]G, then this formula is, by axiom
[&], provably equivalent to a formula without evo-
lution domain restrictions. This is definable in FOD
by Lemma 15, which we use as an abbreviation in
FOD. Later, in the proof of Theorem 1, axiom [&]
also directly gives a provably equivalent but structurally
simpler formula, which is, thus, provable by induction
hypothesis. That part is like the case for [&] in the proof
of Theorem 8.

5) � F → [β∗]G can be derived by induction as fol-
lows. Formula [β∗]G, which expresses that all post-
states of β∗ satisfy G, is an invariant of β∗, because
[β∗]G→ [β][β∗]G is valid, even provable by [∗]. Thus,
its equivalent FOD encoding according to [26] is an
invariant:

φ ≡ ([β∗]G)[≡ ∀~v (Sβ∗(~x,~v)→ G~v~x).

F → φ and φ→ G are valid FOD formulas, hence
derivable by assumption. By G the latter derivation
extends to `D [β∗](φ→ G), from which K derives
`D [β∗]φ→ [β∗]G. As above, φ→ [β]φ is valid by the
semantics of repetition, and thus derivable by IH, since β
is less complex. Thus, G derives `D [β∗](φ→ [β]φ),
from which I derives `D φ→ [β∗]φ. The above deriva-
tions combine propositionally (cut with [β∗]φ and φ) to
`D F → [β∗]G.

Proposition 18 (Relative completeness of first-order liveness).
For each hybrid program α and all FOD formulas F,G

� F → 〈α〉G implies `D F → 〈α〉G.

Proof: Most cases of this proof follow directly from
the equivalence axioms used in Proposition 17, just by the
duality 〈α〉G ≡ ¬[α]¬G. What is different is that axiom I for
repetitions is no equivalence, and thus, does not give dual
arguments. We generalize the arithmetic completeness proof
by Harel [15] to the hybrid case. Assume that � F → 〈β∗〉G.
To derive this formula by C, we use a FOD formula ϕ(n) as a
variant expressing that, after n iterations, β can lead to a state
satisfying G. This formula is obtained from Lemmas 15 and 16
as (〈β∗〉G)[≡ ∃~v (Sβ∗(~x,~v) ∧G~v~x), except that the quantifier
on the repetition count n is removed such that n becomes
a free variable (plus index shifting to count repetitions). We
define ϕ(n− 1) to be

∃~v ∃Z
(
G~v~x ∧ Z

(n)
1 = ~x ∧ Z(n)

n = ~v

∧ ∀i :N (1 ≤ i < n→ Sβ(Z
(n)
i , Z

(n)
i+1))

)
.

By Lemma 14, ϕ(n) can only hold true if n is a natural
number. Now � ϕ(n) ∧ n > 0→ 〈β〉ϕ(n− 1) is valid by
construction according to the loop semantics: If n > 0 is

a natural number then so is n− 1, and if β can reach G
after n repetitions, then, after executing β once, n− 1 rep-
etitions of β can reach G. By IH, this formula is deriv-
able, since β contains less loops. From this, ∀-generalization
and G derive `D [β∗]∀n>0 (ϕ(n)→ 〈β〉ϕ(n− 1)). Thus, C
derives `D ∀v (ϕ(v)→ 〈β∗〉∃v≤0ϕ(v)). Standard first-order
reasoning extends the latter to `D ∃v ϕ(v)→ 〈β∗〉∃v≤0ϕ(v).
It only remains to show that the antecedent is derivable
from F and 〈β∗〉G is derivable from the succedent. The
following formulas are valid FOD formulas, hence derivable
by assumption:
• � F → ∃v ϕ(v), because � F → 〈β∗〉G, and
• � (∃v≤0ϕ(v))→ G, because v ≤ 0, and the fact, that

by Lemma 14, ϕ(v) only holds true for natural numbers,
imply ϕ(0). Further, ϕ(0) entails G, because zero repe-
titions of β have no effect.

By G, the latter extends to `D [β∗](∃v≤0ϕ(v)→ G).
From this, the dual (K〈〉) of K directly derives
`D 〈β∗〉∃v≤0ϕ(v)→ 〈β∗〉G. The above derivations
combine propositionally to `D F → 〈β∗〉G (by a cut
with 〈β∗〉∃v≤0ϕ(v) and with ∃v ϕ(v)).

E. Continuous Relative Completeness of dL
Having succeeded with the proofs of the above results we

can finish the proof of Theorem 1.
Proof of Theorem 1: The proof follows a basic structure

analogous to that of Harel et al.’s proof for the discrete
case [15]. We have to show that every valid dL formula φ can
be proven from FOD axioms within the dL calculus: from � φ
we have to prove `D φ. The proof proceeds as follows: By
propositional recombination, we inductively identify fragments
of φ that correspond to φ1 → [α]φ2 or φ1 → 〈α〉φ2 logically.
Next, we express subformulas φi equivalently in FOD by [26],
and use Propositions 17 and 18 to resolve these first-order
safety or liveness assertions. Finally, we prove that the original
dL formula can be re-derived from the subproofs in the dL
calculus.

We can assume φ to be given in conjunctive normal
form by appropriate propositional reasoning. In particular,
we assume that negations are pushed inside over modalities
using the dualities ¬[α]φ ≡ 〈α〉¬φ and ¬〈α〉φ ≡ [α]¬φ. The
remainder of the proof follows an induction on a measure |φ|
defined as the number of modalities in φ. For a simple
and uniform proof, we assume quantifiers to be abbrevia-
tions for modal formulas: ∃xφ ≡ 〈x′ = 1 ∪ x′ = −1〉φ and
∀xφ ≡ [x′ = 1 ∪ x′ = −1]φ.

0) |φ| = 0; then φ is a (quantifier-free) first-order formula;
hence provable by assumption (even decidable [30]).

1) φ is of the form ¬φ1; then φ1 is first-order, as we
assumed negations to be pushed inside. Hence, |φ| = 0
and Case 0 applies.

2) φ is of the form φ1 ∧ φ2, then individually deduce
simpler proofs for `D φ1 and `D φ2 by IH, which
combine propositionally to a proof for `D φ1 ∧ φ2.

3) φ is a disjunction and—without loss of generality—has
one of the following forms (otherwise use associativity

ANDRÉ PLATZER THE COMPLETE PROOF THEORY OF HYBRID SYSTEMS 17

and commutativity to select a different order for the
disjunction):

φ1 ∨ [α]φ2

φ1 ∨ 〈α〉φ2

As a unified notation for those cases we use φ1 ∨ 〈[α]〉φ2.
Then, |φ2| < |φ|, since φ2 has less modalities. Likewise,
|φ1| < |φ| because 〈[α]〉φ2 contributes one modality to
|φ| that is not part of φ1.
According to [26] there are FOD formulas φ[1, φ

[
2

with � φi ↔ φ[i for i = 1, 2. By congruence, the va-
lidity � φ yields � φ[1 ∨ 〈[α]〉φ[2, which directly implies
� ¬φ[1 → 〈[α]〉φ[2. Then by Propositions 17 or 18, re-
spectively, we derive

`D ¬φ[1 → 〈[α]〉φ[2. (6)

Further � φ1 ↔ φ[1 implies � ¬φ1 → ¬φ[1, which is
derivable by IH, because |φ1| < |φ|. We combine
`D ¬φ1 → ¬φ[1 with (6) (cut with ¬φ[1) to

`D ¬φ1 → 〈[α]〉φ[2. (7)

Likewise � φ2 ↔ φ[2 implies � φ[2 → φ2, which is
derivable by IH, as |φ2| < |φ|. From `D φ[2 → φ2 we
derive `D [α](φ[2 → φ2) by G. Thus, by K or the dual
(K〈〉) of K, we derive8 `D 〈[α]〉φ[2 → 〈[α]〉φ2. Finally we
combine the latter derivation propositionally with (7)
by a cut with 〈[α]〉φ[2 to derive `D ¬φ1 → 〈[α]〉φ2, from
which `D φ1 ∨ 〈[α]〉φ2 can be obtained propositionally
to complete the proof.

4) The case where φ is of the form [α]φ2 or 〈α〉φ2 is
included in case 3 with φ1 ≡ false .

This completes the proof of Theorem 1.

8 We consider quantifiers as abbreviations. Otherwise, we would use a
derivable variant of Hilbert’s ∀-generalization rule: From φ→ ψ conclude
∀xφ→ ∀xψ (dually conclude ∃xφ→ ∃xψ).

	Introduction
	Differential Dynamic Logic
	Regular Hybrid Programs
	Formulas
	Axiomatization

	Continuous Completeness
	Discrete Completeness
	Open Discrete Completeness
	Closed Discrete Completeness
	Discrete Completeness of dLDelta = dL + Delta

	Relative Decidability
	Related Work
	Conclusions
	Acknowledgment
	References
	Appendix A: Euler Approximation Proofs
	Appendix B: Continuous Completeness Proof
	Soundness of dL Calculus
	Characterizing Real Gödel Encodings
	Expressibility and Rendition of Hybrid Program Semantics
	First-Order Continuous Relative Completeness
	Continuous Relative Completeness of dL

