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in the system dynamics to be resolved adversarially by different players with different objectives. The logic
dGL can be used to study the existence of winning strategies for such hybrid games, i.e. ways of resolving
the player’s choices in some way so that he wins by achieving his objective for all choices of the opponent.
Hybrid games are determined, i.e. from each state, one player has a winning strategy, yet computing their
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axiomatization relative to any expressive logic. Separating axioms are identified that distinguish hybrid
games from hybrid systems. Finally, dGL is proved to be strictly more expressive than the corresponding
logic of hybrid systems by characterizing the expressiveness of both.
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1. INTRODUCTION
Hybrid systems [Nerode and Kohn 1992; Alur et al. 1995; Branicky et al. 1998; Davoren
and Nerode 2000] are dynamical systems combining discrete dynamics and continuous
dynamics. They are widely important, e.g., for modeling how computers control phys-
ical systems such as cars [Deshpande et al. 1996], aircraft [Umeno and Lynch 2007]
and other cyber-physical systems. Hybrid systems combine difference equations (or
discrete assignments) and differential equations with conditional switching, nondeter-
ministic choices, and repetition [Platzer 2010b]. Hybrid systems are not semidecidable
[Henzinger et al. 1995], but nevertheless studied by many successful verification ap-
proaches [Platzer 2012c; Doyen et al. 2016]. They have a complete axiomatization rel-
ative to differential equations in differential dynamic logic (dL) [Platzer 2008; Platzer
2012a], which extends Pratt’s dynamic logic of conventional discrete programs [Pratt
1976] to hybrid systems by adding differential equations and a reachability relation
semantics on the real Euclidean space.

Hybrid games [Nerode et al. 1996; Tomlin et al. 1998; Henzinger et al. 1999; Tomlin
et al. 2000; Dharmatti and Ramaswamy 2006; Bouyer et al. 2010; Vladimerou et al.
2011] are games of two players on a hybrid system. Hybrid games add an adversar-
ial dynamics to hybrid systems, i.e. an adversarial way of resolving the choices in the
system dynamics. Both players can make their respective choices arbitrarily. They are
not assumed to cooperate towards a common goal but may compete. The prototypical

This material is based upon work supported by the National Science Foundation under NSF CAREER Award
CNS-1054246. A preliminary version has appeared as a report [Platzer 2012b; Platzer 2013].
Author’s address: A. Platzer, Computer Science Department, Carnegie Mellon University, 5000 Forbes Av-
enue, Pittsburgh, PA 15213, USA.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for third-party components of this
work must be honored. For all other uses, contact the owner/author(s).
c© 2015 Copyright held by the owner/author(s). 1529-3785/2015/11-ART1 $15.00
DOI: http://dx.doi.org/10.1145/2817824

ACM Transactions on Computational Logic, Vol. 17, No. 1, Article 1, Publication date: November 2015.

http://dx.doi.org/10.1145/2817824
http://dx.doi.org/10.1145/2817824


1:2 A. Platzer

example of a hybrid game is RoboCup, where two (teams of) robots move continuously
on a soccer field subject to the discrete decisions of their respective control programs,
and they resolve their choices adversarially in active competition for scoring goals.
Worst-case verification of many other situations leads to hybrid games. Two robots
may already end up in a hybrid game if they simply do not know each other’s objec-
tives, because worst-case analysis assumes they might interfere, which makes them
compete accidentally rather than on purpose. The former situation is true competi-
tion, the latter analytic competition, because possible competition was assumed for the
sake of a worst-case analysis. Aircraft separation provides further natural scenarios
for both true [Isaacs 1967] and analytic [Tomlin et al. 1998] competition. Hybrid games
are also fundamental for security questions about hybrid systems, which intrinsically
involve adversarial situations with more than one player. Many different variations of
hybrid games are interesting for applications [Tomlin et al. 1998; Tomlin et al. 2000;
Henzinger et al. 1999; Prandini et al. 2001; Bouyer et al. 2010; Vladimerou et al. 2011;
Quesel and Platzer 2012], including games between controller and plant for control
synthesis, hybrid pursuit-evader games, or hybrid games for verification of robot con-
trollers against an uncertain environment or an external disturbance.

This article does not focus on one such fixed pattern of game interaction in hybrid
systems, but considers a more general framework for hybrid game interactions of two
players. While the results of this article show promise in practice, the focus of this
article is on fundamental logical considerations for hybrid games. It develops a compo-
sitional programming language for hybrid games and a logic for hybrid games along
with its fundamental compositional proof principles. The article analyzes hybrid games
and contrasts them with hybrid systems in terms of their analytic complexity, axiom-
atizations, and expressiveness.

Approach. This article studies a compositional model of hybrid games obtained as a
programming language from a compositional model of hybrid systems [Platzer 2008]
by simply adding the duality operator d for passing control between the players. The
dual game αd is the same as the hybrid game α with the roles of the players swapped,
much like what happens when turning a chessboard around by 180◦ so that players
black and white swap sides. Hybrid games without d are single-player, like hybrid
systems are, because d is the only operator where control passes to the other player.
Hybrid games with d give both players control over their respective choices (indicated
by d). They can play in reaction to the outcome that the previous choices by the players
have had on the state of the system. The fact that d is an operator on hybrid games
makes them fully symmetric. That is, they allow arbitrary combinations of all oper-
ators at arbitrary nesting depths to define the game, not just a single fixed pattern
like, e.g., the separation into a single loop of a continuous plant player and a discrete
controller player that has been predominant in other approaches.

Hybrid games are game-theoretically reasonably tame sequential, non-cooperative,
zero-sum, two-player games of perfect information with payoffs±1.1 What makes them
challenging is that they are played on hybrid systems, which causes reachability com-
putations and the canonical game solution technique of backwards induction for win-
ning regions to take infinitely many iterations (≥ωCK

1 ) to terminate.
One of the most fundamental questions about a hybrid game is whether the player

of interest has a winning strategy, i.e. a way of resolving his choices that will lead to a
state in which that player wins, no matter how the opponent player resolves his respec-

1Draws, coalitions, rewards, and payoffs different from ±1 etc. are expressible in the logic developed in this
article, which gains simplicity and elegance by focusing on the most fundamental case of hybrid games.
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Differential Game Logic 1:3

tive choices.2 If the player has such a winning strategy, he can achieve his objectives
no matter what the opponent does, otherwise he needs his opponent to cooperate.

This article introduces a logic and proof calculus for hybrid games and thereby de-
couples the questions of truth (existence of winning strategies) and proof (winning
strategy certificates) and proof search (automatic construction of winning strategies).
It studies provability (existence of proofs) and the proof theory of hybrid games and
identifies what the right proof rules for hybrid games are (soundness & completeness).

This article presents differential game logic (dGL) and its axiomatization for study-
ing the existence of winning strategies for hybrid games. It generalizes hybrid systems
to hybrid games by adding the duality operator d and a winning strategy semantics
on the real Euclidean space. Hybrid games simultaneously generalize hybrid systems
[Nerode and Kohn 1992; Alur et al. 1995] and discrete games [Parikh 1983; Parikh
1985; Pauly and Parikh 2003]. Similarly, dGL simultaneously generalizes logics of hy-
brid systems and logics of discrete games. The logic dGL generalizes differential dy-
namic logic (dL) [Platzer 2008; Platzer 2012a] from hybrid systems to hybrid games
with their adversarial dynamics and, simultaneously, generalizes Parikh’s proposi-
tional game logic [Parikh 1983; Parikh 1985; Pauly and Parikh 2003] from games on
finite-state discrete systems to games on hybrid systems with their differential equa-
tions, uncountable state spaces, uncountably many possible moves, and interacting
discrete and continuous dynamics.

Contributions. Every particular play of a hybrid game has exactly one winner (Sec-
tion 2). From each state exactly one player has a winning strategy no matter how the
opponent reacts (determinacy, Section 3). The dGL proof calculus can be used to find out
which of the two players it is that has a winning strategy from which state (Section 4).
The logic dGL for hybrid games is proved to be fundamentally more expressive than
the logic dL for hybrid systems by characterizing the expressiveness of both (Section 5).

The primary contributions of this article are as follows. The logic dGL identifies the
logical essence of hybrid games and their game combinators.3 It identifies a simple,
algebraic, compositional model of hybrid games as a programming language for hy-
brid games by adding the control switching operator d to a programming language
for hybrid systems [Platzer 2012a] and reinterpreting its compositional operators as
operators on hybrid games. This article introduces differential game logic for hybrid
games with a simple modal semantics and a simple compositional proof calculus, which
is proved to be a sound and complete axiomatization relative to any expressive logic.
Completeness for game logics is a subtle problem. Completeness of propositional dis-
crete game logic has been an open problem for 30 years [Parikh 1983]. This article
focuses on more general hybrid games and proves a generalization of Parikh’s calculus
to be relatively complete for hybrid games. The completeness proof is constructive and
identifies a fixpoint-style proof technique, which can be considered a modal analogue
of characterizations in the Calculus of Constructions [Coquand and Huet 1988]. This
technique is practical for hybrid games, and also easier for hybrid systems than previ-
ous proof techniques. These results suggest hybrid game versions of influential views

2A closely related question is about ways to exhibit that winning strategy, for which existence is a prerequi-
site and a constructive proof is a representation of that winning strategy. A proof is a certificate witnessing
the existence of a winning strategy. As soon as one knows from which states a winning strategy exists, local
search in the action space would be enough. But search may still be challenging in dense action spaces.
3Hybrid games only lead to a minor syntactic change compared to hybrid systems (the addition of d), yet
one that entails pervasive semantical reconsiderations, because the semantic basis for assigning meaning to
operators changes in the presence of adversarial interactions. This change leads to more expressiveness. It
is a sign of logical robustness that this results in a surprisingly small change in the axiomatization. Overall,
the changes induced by dualities are in some ways radical, yet, in other ways surprisingly smooth.
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of understanding program invariants as fixpoints [Cousot and Cousot 1977; Clarke
1979]. Harel’s convergence rule [Harel et al. 1977], which poses practical challenges
for hybrid systems verification, now turns out to be unnecessary for hybrid games,
hybrid systems, and programs. All separating axioms are identified that capture the
logical difference of hybrid systems versus hybrid games. Hybrid games are proved to
be determined, i.e. in every state, exactly one player has a winning strategy, which is
the basis for assigning classical truth to logical formulas that refer to winning strate-
gies of hybrid games. Winning regions of hybrid games are characterized by fixpoints
of a monotone operator, which can be obtained by iteration but that iteration may only
stop after ≥ωCK

1 many steps. Hybrid games are shown to be a fundamental extension
of hybrid systems by proving that the logic dGL for hybrid games is fundamentally
more expressive than the corresponding logic dL for hybrid systems, which is related
to long-standing unsolved questions in the propositional case [Parikh 1985; Berwanger
et al. 2007]. This separation also characterizes the expressiveness of dL and of dGL.

Structure of this Article. The syntax and denotational semantics of dGL are intro-
duced in Section 2. Section 3 establishes meta-properties, including determinacy (Sec-
tion 3.1), equivalences of hybrid games and reductions eliminating evolution domains
(Section 3.2), and an analysis proving that winning regions of hybrid games can be
characterized by iteration of a monotone image computation operator until a fixpoint,
which may only stop after ≥ωCK

1 many steps (Section 3.3) unlike hybrid systems whose
corresponding closure ordinal is ω. Section 4 presents an axiomatization of dGL as a
Hilbert-type proof calculus (Section 4.1) that is proved sound (Section 4.2) and com-
plete (Section 4.3) relative to any differentially expressive logic, which are exemplified
subsequently (Section 4.4). The axiomatic separation between hybrid systems and hy-
brid games is identified in Section 4.5 and proved in Appendix B. Hybrid games are
proved more expressive than hybrid systems in Section 5, where the expressiveness of
the hybrid games logic dGL and the hybrid systems logic dL are characterized. Related
work is discussed in Section 6, concluding in Section 7.

Example proofs in the dGL calculus are shown in Appendix A. Appendix B proves the
axiomatic separation from Section 4.5. For reference and to support the interactive in-
tuition of game play, an operational semantics of hybrid games is shown in Electronic
Appendix A. Alternative semantics for repetitions of hybrid games are contrasted in
Electronic Appendix B. Finally, Electronic Appendix C provides concrete hybrid games
to support the computational intuition for the higher closure ordinals proved generi-
cally in Section 3.3.

2. DIFFERENTIAL GAME LOGIC
A robot is a canonical example of a hybrid system. Suppose a robot, WALL·E, is run-
ning around on a planet collecting trash. His dynamics is that of a hybrid system,
because his continuous dynamics comes from the differential equations describing
his continuous physical motion in space, while his discrete dynamics comes from his
computer-based control decisions about when to move in which direction and when to
stop moving in order to gather trash. As soon as WALL·E meets another robot, EVE,
however, her presence changes everything for him. If WALL·E neither knows how EVE
is programmed nor exactly what her goal is, then the only safe thing he can assume
about her is that she might do anything within her physical capabilities. It takes the
study of a hybrid game to find out whether or not WALL·E can use his choices in some
way to reach his goal, say, collecting trash and avoiding collisions with EVE, regardless
of how EVE chooses her actions.
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The hybrid games considered here have no draws.4 For any particular play of the
WALL·E and EVE game, for example, either WALL·E achieves his objective or he
does not. There is no in between. When a hybrid game expects a player to move, but
the rules of the game do not permit any of his moves from the current state, then
that player loses right away (he deadlocks). If the game completes without deadlock,
the player who reaches one of his winning states wins. Thus, exactly one player wins
each (completed) game play for complementary winning states, because the games are
uncountably-infinite state but of arbitrary unbounded but finite duration. So reaching
a winning state in the limit after infinitely many steps is not enough to win the game,
but the players have to win in any arbitrary unbounded finite amount of time and
after an arbitrary unbounded finite number of steps. The games are zero-sum games,
i.e. if one player wins, the other one loses, with player payoffs ±1. Losses or victories
of different payoff are not considered explicitly, because they are representable with
extra variables that track payoffs. The two players are classically called Angel and
Demon. By considering aggregate players, these results generalize in the usual way
to the case where Angel and Demon represent coalitions of agents that work together
to achieve a common goal such as the aggregate Angel player for one team and the
aggregate Demon player for the other team in the case of RoboCup.

Hybrid games are non-cooperative and sequential games. In non-cooperative games,
the players can choose to act arbitrarily according to the rules represented in the
game.5 Sequential (or dynamic) games are games that proceed in a series of steps,
where, at each step, exactly one of the players can choose an action based on the out-
come of the game so far. Concurrent games, where both players choose actions simul-
taneously, as well as their equivalent6 games of imperfect information, are interesting
but not considered explicitly here [Alur et al. 2002; Berwanger and Pinchinat 2009].
Imperfect information games lead to Henkin quantifiers, not first-order quantifiers.

2.1. Syntax
Differential game logic (dGL) is a logic for studying properties of hybrid games. The
idea is to describe the game form, i.e. rules, dynamics, and choices of the particular
hybrid game of interest, using a program notation and to then study its properties by
proving the validity of logical formulas that refer to the existence of winning strategies
for objectives of those hybrid games. Even though hybrid game forms only describe the
game form with its dynamics and rules and choices, not the objective, they are still
called hybrid games. Hybrid game forms represent the rules of the game, so during
the game play, players can never win but only lose (prematurely) by violating these
rules. The actual objective for a hybrid game is defined in the modal logical formula
that refers to that hybrid game form and is evaluated at the end of the game play. Hy-
brid games and differential game logic formulas are defined by simultaneous induction
focusing on polynomial terms for simplicity.

4 For applications with draws, it is easy to follow Zermelo [1913] and compare two games, one for each
player, that attribute draws pessimistically as losses. Draws in the original game result from those states
from which both players would lose their games when considering draws pessimistically as their respective
losses. Draws come from states where no player can make sure to win-and-not-draw but only to win-or-draw.
Hybrid games with draws are represented using two modalities of the logic dGL developed in this article.
5 Applications with cooperative games, where players form coalitions or negotiate binding contracts, are
representable in the rules of the game to track coalitions and limit player’s choices according to the contracts.
6Concurrent games in which the players choose actions simultaneously can be converted into sequential
games of imperfect information in which the players choose sequentially yet without information about the
opponent’s choice.
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Definition 2.1 (Hybrid games). The hybrid games of differential game logic dGL are
defined by the following grammar (α, β are hybrid games, x a variable, θ a (polynomial)
term, ψ is a dGL formula):

α, β ::= x := θ | x′ = θ&ψ | ?ψ | α ∪ β | α;β | α∗ | αd

Definition 2.2 (dGL formulas). The formulas of differential game logic dGL are de-
fined by the following grammar (φ, ψ are dGL formulas, p is a predicate symbol of arity
k, θi are (polynomial) terms, x a variable, and α is a hybrid game):

φ, ψ ::= p(θ1, . . . , θk) | θ1 ≥ θ2 | ¬φ | φ ∧ ψ | ∃xφ | 〈α〉φ | [α]φ

Other operators >,=,≤, <,∨,→,↔,∀x or > and ⊥ for true and false can be defined as
usual, e.g., ∀xφ ≡ ¬∃x¬φ, including all program operators [Platzer 2010b]. The modal
formula 〈α〉φ expresses that Angel has a winning strategy7 to achieve φ in hybrid game
α, i.e. Angel has a strategy to reach a state satisfying dGL formula φ when playing hy-
brid game α, no matter what strategy Demon chooses. That is, 〈α〉φ expresses that
Angel can guarantee to reach into the set of states satisfying φ but she cannot usually
predict which of the states satisfying φ she will reach, because that depends on De-
mon’s choices. The modal formula [α]φ expresses that Demon has a winning strategy
to achieve φ in hybrid game α, i.e. a strategy to reach a state satisfying φ, no matter
what strategy Angel chooses. Note that the same game is played in [α]φ as in 〈α〉φ
with the same choices resolved by the same players. The difference between both dGL
formulas is the player whose winning strategy they refer to. Both use the set of states
where dGL formula φ is true as the winning states for that player. The winning condi-
tion is defined by the modal formula, α only defines the hybrid game form, not when
the game is won, which is what φ does. Hybrid game α defines the rules of the game,
including conditions on state variables that, if violated, cause the present player to
lose for violation of the rules of the game. The dGL formulas 〈α〉φ and [α]¬φ consider
complementary winning conditions for Angel and Demon.

The atomic games of dGL are assignments, continuous evolutions, and tests. The
discrete assignment game x := θ instantly changes the value of variable x to that of
θ by a discrete jump without any choices to resolve. In the continuous evolution game
x′ = θ&ψ, the system follows the differential equation x′ = θ where the duration is An-
gel’s choice, but Angel is not allowed to choose a duration that would, at any time, take
the state outside the region where formula ψ holds. In particular, Angel is deadlocked
and loses immediately if ψ does not hold in the current state, because she cannot even
evolve for duration 0 then without going outside ψ.8 The test game or challenge ?ψ has
no effect on the state, except that Angel loses the game immediately if dGL formula ψ
does not hold in the current state. If Angel passes the challenge ?ψ, the game continues
from the same state, otherwise she loses immediately.

The compound games of dGL are sequential, choice, repetition, and duals. The se-
quential game α;β is the hybrid game that first plays hybrid game α and, when hybrid
game α terminates without a player having lost already (so no challenge in α failed),

7A strategy for a player can be thought of as a function that selects one option whenever that player has a
choice during the game play. A winning strategy for a player is a way of resolving choices that will lead to
a state in which that player wins, no matter how the opponent player resolves his respective choices. The
semantics of dGL is a denotational semantics based on winning regions. A formal definition for strategies
and winning strategies is, thus, unnecessary, yet shown in Appendix A for reference.
8 The most common case for ψ is a formula of first-order real arithmetic. In Section 3.2, evolution domain
constraints ψ turn out to be unnecessary, because they can be defined using hybrid games. In the ordinary
differential equation x′ = θ, the term x′ denotes the time-derivative of x and θ is a polynomial term that is
allowed to mention x and other variables. Systems of differential equations are considered vectorially. More
general forms of differential equations are possible [Platzer 2010a], but will not be considered explicitly.
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continues by playing game β. When playing the choice game α ∪ β, Angel chooses
whether to play hybrid game α or play hybrid game β. Like all the other choices, this
choice is dynamic, i.e. every time α ∪ β is played, Angel gets to choose again whether
she wants to play α or β this time. The repeated game α∗ plays hybrid game α repeat-
edly and Angel chooses, after each play of α that terminates without a player having
lost already, whether to play the game again or not, albeit she cannot choose to play
indefinitely but has to stop repeating ultimately. Angel is also allowed to stop α∗ right
away after zero iterations of α.

Most importantly, the dual game αd is the same as playing the hybrid game α with
the roles of the players swapped during game play. That is Demon decides all choices
in αd that Angel has in α, and Angel decides all choices in αd that Demon has in
α. Players who are supposed to move but deadlock lose, hence Demon loses in the
dual game αd when he deadlocks because those correspond situations where Angel is
supposed to move but deadlocks in α and vice versa. Thus, while the test game ?ψ
causes Angel to lose if formula ψ does not hold, the dual test game (or dual challenge)
(?ψ)d causes Demon to lose if ψ does not hold. It is exactly the same formula ψ whose
truth-value decides about the fate of the game in both cases since d does not affect
the meaning of formulas within tests, but the player who loses changes. In ?ψ, it is
Angel who loses when ψ does not hold because she was supposed to move. In (?ψ)d, it
is Demon who loses when ψ does not hold as he was supposed to move. For example, if
α describes the game of chess, then αd is chess where the players switch to control the
other side. Recall that hybrid games are game forms so d only affects the actions (and
premature losses if no action is possible), not the objective of the game, which is what
the modal formulas define. So, Angel has the same goal φ in 〈αd〉φ and 〈α〉φ but her
actions in αd switched to what used to be Demon’s actions in α and vice versa, which is
why it will turn out that 〈αd〉φ and [α]φ are equivalent (Section 4). The dual operator
d is the only syntactic difference of dGL for hybrid games compared to dL for hybrid
systems [Platzer 2008; Platzer 2012a], but a fundamental one, because it is the only
operator where control passes from Angel to Demon or back. Without d all choices are
resolved uniformly by Angel without interaction. The presence of d requires a thorough
semantic generalization throughout the logic, though.

The logic dGL only provides logically essential operators. Many other game inter-
actions for games can be defined from the elementary operators that dGL provides.
Demonic choice between hybrid game α and β is α ∩ β, defined by (αd ∪ βd)d, in which
either the hybrid game α or the hybrid game β is played, by Demon’s choice. Demonic
repetition of hybrid game α is α×, defined by ((αd)

∗
)d, in which α is repeated as often

as Demon chooses to. In α×, Demon chooses after each play of α whether to repeat
the game, but cannot play indefinitely so he has to stop repeating ultimately. The
dual differential equation (x′ = θ&ψ)d follows the same dynamics as x′ = θ&ψ ex-
cept that Demon chooses the duration, so he cannot choose a duration during which ψ
stops to hold at any time. Hence he loses when ψ does not hold in the current state.
Dual assignment (x := θ)d is equivalent to x := θ, because it is deterministic so involves
no choices. Other program operators are also definable [Platzer 2010b], e.g., nonde-
terministic assignment x := ∗ defined by x′ = 1;x′ = −1. Unary operators (including
∗,d ,∀x, [α], 〈α〉) bind stronger than binary operators and ; binds stronger than ∪ and
∩, so α;β ∪ γ ≡ (α;β) ∪ γ.

Note that, quite unlike in the case of α∗ and unlike in differential games [Platzer
2015a], it is irrelevant whether Angel decides the duration for x′ = θ&ψ before or
after that continuous evolution, because initial-value problems for x′ = θ have unique
solutions by Picard-Lindelöff as term θ is smooth.

ACM Transactions on Computational Logic, Vol. 17, No. 1, Article 1, Publication date: November 2015.



1:8 A. Platzer

Observe that every (completed) play of a game is won or lost by exactly one player.
Even a play of repeated game α∗ has only one winner, because the game stops as soon
as one player has won, e.g., because his opponent failed a test. This is different than
the repetition of whole game plays (including winning/losing), where the purpose is for
the players to repeat the same game over and over again to completion, win and lose
multiple times, and study who wins how often in the long run with mixed strategies.
A hybrid game is played once (even if some part of it constitutes in repeating action
choices) and it stops as soon as either Angel or Demon have won. In applications, the
system is already in trouble even if it loses the game only once, because that may entail
that a safety-critical property has already been violated.

Example 2.3 (WALL·E and EVE). Consider a game of the robots WALL·E and EVE
moving on a (one-dimensional) planet.

(w − e)2 ≤ 1 ∧ v = f →
〈(

(u := 1 ∩ u :=−1);

(g := 1 ∪ g :=−1);

t := 0; (w′ = v, v′ = u, e′ = f, f ′ = g, t′ = 1 & t ≤ 1)d
)×〉

(w − e)2 ≤ 1

(1)

Robot WALL·E is at position w with velocity v and acceleration u and plays the part
of Demon. Robot EVE is at e with velocity f and acceleration g and plays the part of
Angel. The antecedent of (1) before the implication assumes that WALL·E and EVE
start close to one another (distance at most 1) and with identical velocities. The objec-
tive of EVE, who plays Angel’s part in (1), is to be close to WALL·E (i.e. (w− e)2 ≤ 1) as
specified after the 〈·〉 modality in the succedent. The hybrid game proceeds as follows.
Demon WALL·E controls how often the hybrid game repeats by operator ×. In each
iteration, Demon WALL·E first chooses (∩) to accelerate (u := 1) or brake (u := −1),
then Angel EVE chooses (∪) whether to accelerate (g := 1) or brake (g := −1). Every
time that the × loop repeats, the players get to make that choice again. They are not
bound by what they chose in the previous iterations. Yet, depending on the previous
choices, the state will have evolved differently, which influences indirectly what moves
a player needs to choose to win. After this sequence of choices of u and g by Demon
and Angel, respectively, a clock variable t is reset to t := 0. Then the game follows
a differential equation system such that the time-derivative of WALL·E’s position w
is his velocity v and the time-derivative of v is acceleration u, the time-derivative of
EVE’s position e is her velocity f and the time-derivative of f is acceleration g. The
time-derivative of clock variable t is 1, yet the differential equation is restricted to the
evolution domain t ≤ 1. Angel controls the duration of differential equations. Yet, this
differential equation is within a dual game by operator d, so Demon controls the du-
ration of the continuous evolution. Here, both WALL·E and EVE evolve continuously
but Demon WALL·E decides how long. He cannot chose durations > 1, because that
would make him violate the evolution domain constraint t ≤ 1 and lose, so the players
can change their control after at most one time unit, but Demon decides when exactly.
Similar games can be studied for robot motion in higher dimensions using dGL.

The two players in Example 2.3 use various dualities to model a situation where
Demon chooses discretely (∩), then Angel chooses discretely (∪), then Demon chooses
the duration for the joint continuous evolution ((w′ = . . .& t ≤ 1)d) and finally Demon
decides about repetition (×), which gives 6 dual operators with nesting depth 4 (or 3
when discounting dual assignments). Deeper nesting levels of hybrid game operators,
which give rise to longer chains of d operators, can be used to describe hybrid games
with more levels of interaction (any arbitrary number of nested ∪ ,d , ∗).
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Example 2.4 (WALL·E and EVE and the world). The game in (1) accurately reflects
the situation when WALL·E is in control of time since the (only) differential equation
occurs within an odd number of d operators. But to design the model (1), EVE may
have used a common modeling device to conservatively attribute the control of the
differential equation to WALL·E, even if time is really under control of a third player,
the external environment. EVE’s reason for this model would be that she is not in
control of time, so there is no reason to believe why time would help her. EVE, thus,
conservatively ceases control of time to Demon, which corresponds to assuming that
the third player of the external environment is allowed to collaborate with WALL·E to
form an aggregate Demon player consisting of WALL·E and the environment.

When WALL·E wants to analyze his winning strategies with a [·] variation of (1),
he could use the same modeling device to flip the differential equation over to Angel’s
control by removing the d to conservatively associate the environment to the opponent:

(w − e)2 ≤ 1 ∧ v = f →
[(

(u := 1 ∩ u :=−1);

(g := 1 ∪ g :=−1);

t := 0; (w′ = v, v′ = u, e′ = f, f ′ = g, t′ = 1 & t ≤ 1)
)×]

(w − e)2 > 1

(2)

If, instead, WALL·E keeps the same hybrid game as in (2), just with [·], the game con-
siders the situation when WALL·E has control over time, which would make some part
of the game trivial, because, once he reached (w−e)2 > 1, the Demon WALL·E can then
just always evolve for 0 time units. Observe how a three-player game of WALL·E, EVE,
and environment can be analyzed by combining the dGL formulas (1) and (2) propo-
sitionally, which then analyze the same game from different perspectives of possible
collaborations. The dGL formula expressing that neither (1) nor (2) is true, for example,
is true in exactly the states where WALL·E and EVE draw, because the disturbance of
the external environment can choose the winner by helping either WALL·E or EVE.

When the role of such environments is not limited to influencing only differential
equation durations, the appropriate placement of d operators around additional choices
(∪) or repetitions (∗) or multiple differential equations gives models more flexibility.
Similar phenomena happen when further players are added to the game as long as
their role can be described by logical combinations of dGL formulas investigating the
game from a set of aggregated two-player perspectives. Surprisingly, there is virtually
no limit to how far logic around such essentially two-player hybrid games extends to
seemingly substantially more general situations by appropriate modeling (Section 5).

2.2. Semantics
The logic dGL has a denotational semantics. The dGL semantics defines, for each for-
mula φ, the set [[φ]]

I of states in which φ is true. For each hybrid game α and each
set of winning states X, the dGL semantics defines the set ςα(X) of states from which
Angel has a winning strategy to achieve X in hybrid game α, as well as the set δα(X)
of states from which Demon has a winning strategy to achieve X in α.

A state s is a mapping from variables to R. An interpretation I assigns a relation
I(p) ⊆ Rk to each predicate symbol p of arity k. The interpretation further determines
the set of states S, which is isomorphic to a Euclidean space Rn when n is the number of
relevant variables. For a subset X ⊆ S the complement S \X is denoted X{. Let srx de-
note the state that agrees with state s except for the interpretation of variable x, which
is changed to r ∈ R. The value of term θ in state s is denoted by [[θ]]s. The denotational
semantics of dGL formulas will be defined in Def. 2.5 by simultaneous induction along
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with the denotational semantics, ςα(·) and δα(·), of hybrid games, defined in Def. 2.6,
because dGL formulas are defined by simultaneous induction with hybrid games.

Definition 2.5 (dGL semantics). The semantics of a dGL formula φ for each inter-
pretation I with a corresponding set of states S is the subset [[φ]]

I ⊆ S of states in
which φ is true. It is defined inductively as follows

(1) [[p(θ1, . . . , θk)]]
I

= {s ∈ S : ([[θ1]]s, . . . , [[θk]]s) ∈ I(p)}
(2) [[θ1 ≥ θ2]]

I
= {s ∈ S : [[θ1]]s ≥ [[θ2]]s}

(3) [[¬φ]]
I

= ([[φ]]
I
){

(4) [[φ ∧ ψ]]
I

= [[φ]]
I ∩ [[ψ]]

I

(5) [[∃xφ]]
I

= {s ∈ S : srx ∈ [[φ]]
I for some r ∈ R}

(6) [[〈α〉φ]]
I

= ςα([[φ]]
I
)

(7) [[[α]φ]]
I

= δα([[φ]]
I
)

A dGL formula φ is valid in I, written I |= φ, iff it is true in all states, i.e. [[φ]]
I

= S.
Formula φ is valid, � φ, iff I |= φ for all interpretations I.

Definition 2.6 (Semantics of hybrid games). The semantics of a hybrid game α is
a function ςα(·) that, for each interpretation I and each set of Angel’s winning states
X ⊆ S, gives the winning region, i.e. the set of states ςα(X) from which Angel has a
winning strategy to achieve X in α (whatever strategy Demon chooses). It is defined
inductively as follows9

(1) ςx:=θ(X) = {s ∈ S : s
[[θ]]s
x ∈ X}

(2) ςx′=θ&ψ(X) = {ϕ(0) ∈ S : ϕ(r) ∈ X for some r ∈ R≥0 and (differentiable)
ϕ : [0, r]→ S such that ϕ(ζ) ∈ [[ψ]]

I and dϕ(t)(x)
dt (ζ) = [[θ]]ϕ(ζ) for all 0 ≤ ζ ≤ r}

(3) ς?ψ(X) = [[ψ]]
I ∩X

(4) ςα∪β(X) = ςα(X) ∪ ςβ(X)
(5) ςα;β(X) = ςα(ςβ(X))
(6) ςα∗(X) =

⋂
{Z ⊆ S : X ∪ ςα(Z) ⊆ Z}

(7) ςαd(X) = (ςα(X{)){

The winning region of Demon, i.e. the set of states δα(X) from which Demon has a
winning strategy to achieve X in α (whatever strategy Angel chooses) is defined induc-
tively as follows

(1) δx:=θ(X) = {s ∈ S : s
[[θ]]s
x ∈ X}

(2) δx′=θ&ψ(X) = {ϕ(0) ∈ S : ϕ(r) ∈ X for all r ∈ R≥0 and (differentiable) ϕ : [0, r]→ S
such that ϕ(ζ) ∈ [[ψ]]

I and dϕ(t)(x)
dt (ζ) = [[θ]]ϕ(ζ) for all 0 ≤ ζ ≤ r}

(3) δ?ψ(X) = ([[ψ]]
I
){ ∪X

(4) δα∪β(X) = δα(X) ∩ δβ(X)
(5) δα;β(X) = δα(δβ(X))
(6) δα∗(X) =

⋃
{Z ⊆ S : Z ⊆ X ∩ δα(Z)}

(7) δαd(X) = (δα(X{)){

9 The semantics of a hybrid game is not merely a reachability relation between states as for hybrid systems
[Platzer 2012a], because the adversarial dynamic interactions and nested choices of the players have to be
taken into account.
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The notation uses ςα(X) and δα(X) instead of ςIα(X) and δIα(X), because the interpre-
tation I that gives a semantics to predicate symbols in tests and evolution domains
is clear from the context. Strategies do not occur explicitly in the dGL semantics, be-
cause it is based on winning regions, i.e. the existence of winning strategies, not on
the strategies themselves. The winning regions for Angel are illustrated in Fig. 1. The
winning region ςα∗(X) is the smallest set Z around X that already contains all states
from which one more ςα(·) could win into Z, so ςα(ςα∗(X)) \ ςα∗(X) = ∅. It includes all
κ-fold iterations ςκα(X) of the winning region construction ςα(·) (Section 3.3) for all κ.

X

ςx:=θ(X)

Xx
′ =

θ

ςx′=θ(X)

X

[[φ]]
I

ς?φ(X)

ςα (X)

ςβ(
X)

Xςα∪β(X) ςα(ςβ(X)) ςβ(X) X

ςα;β(X)

ςα(ςα∗(X)) \ ςα∗(X)
∅

ς∞α (X) · · · ς3α(X) ς2α(X) ςα(X) X

ςα∗(X) X{

X

ςα(X{)

ςα(X{){

ςαd(X)

Fig. 1. Illustration of denotational semantics of hybrid games as winning regions

The semantics is compositional, i.e. the semantics of a compound dGL formula is
a simple function of the semantics of its pieces, and the semantics of a compound
hybrid game is a function of the semantics of its pieces. This guarantees referential
transparency and enables a compositional proof calculus. Furthermore, existence of a
strategy in hybrid game α to achieve X is independent of games and dGL formulas
surrounding α, but just depends on the remaining game α itself and the goal X. By a
simple inductive argument, this shows that one can focus on memoryless strategies,
because the existence of strategies does not depend on the context, hence, by working
bottom up, the strategy itself cannot depend on past states and choices, only the cur-
rent state, remaining game, and goal. This follows from a generalization of a classical
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result [Zermelo 1913], but is directly apparent in a logical setting. Furthermore, the
semantics is monotone, i.e. larger sets of winning states induce larger winning regions.

LEMMA 2.7 (MONOTONICITY). The semantics is monotone, i.e. ςα(X) ⊆ ςα(Y ) and
δα(X) ⊆ δα(Y ) for all X ⊆ Y .

PROOF. A simple check based on the observation that X only occurs with an even
number of negations in the semantics. For example, ςα∗(X) =

⋂
{Z ⊆ S : X ∪ ςα(Z) ⊆

Z} ⊆
⋂
{Z ⊆ S : Y ∪ ςα(Z) ⊆ Z} = ςα∗(Y ) if X ⊆ Y . Likewise, X ⊆ Y implies X{ ⊇ Y {,

hence ςα(X{) ⊇ ςα(Y {), so ςαd(X) = (ςα(X{)){ ⊆ (ςα(Y {)){ = ςαd(Y ).

Monotonicity implies that the least fixpoint in ςα∗(X) and the greatest fixpoint in
δα∗(X) are well-defined [Harel et al. 2000, Lemma 1.7]. The semantics of ςα∗(X) is
a least fixpoint, which results in a well-founded repetition of α, i.e. Angel can repeat
any number of times but she ultimately needs to stop at a state in X in order to win.
In particular, Angel cannot play a Zeno strategy with infinitely many steps in finite
time. The semantics of δα∗(X) is a greatest fixpoint, instead, for which Demon needs
to achieve a state in X after every number of repetitions, because Angel could choose
to stop at any time, but Demon still wins if he only postpones X{ forever, because
Angel ultimately has to stop repeating. Thus, for the formula 〈α∗〉φ, Demon already
has a winning strategy if he only has a strategy that is not losing by preventing φ
indefinitely, because Angel eventually has to stop repeating anyhow and will then end
up in a state not satisfying φ, which makes her lose. The situation for [α∗]φ is dual.

Hybrid games branch finitely when the players decide which game to play in α ∪ β
and α ∩ β, respectively. The games α∗ and α× also branch finitely, because, after each
repetition of α, the respective player (Angel for α∗ and Demon for α×) may decide
whether to repeat again or stop. Repeated games still lead to infinitely many branches,
because a repeated game can be repeated any arbitrary number of times. The game
branches uncountably infinitely, however, when the players decide how long to evolve
along differential equations in x′ = θ&ψ and (x′ = θ&ψ)d, because uncountably many
nonnegative real number could be chosen as a duration (unless the system leaves ψ
immediately). These choices can be made explicit by relating the simple denotational
modal semantics of dGL to an equivalent operational game semantics that is techni-
cally much more involved but directly exposes the interactive intuition of game play.
For reference, this approach has been made explicit in Appendix A.

Example 2.8. The following simple dGL formula

〈(x := x+ 1; (x′ = x2)d ∪ x := x− 1)
∗〉 (0 ≤ x < 1) (3)

is true in all states from which there is a winning strategy for Angel to reach [0,1).
It is Angel’s choice whether to repeat (∗) and, every time she does, it is her choice (∪)
whether to increase x by 1 and then (after ;) give Demon control over the duration
of the differential equation x′ = x2 (left game) or whether to instead decrease x by 1
(right game). Formula (3) is valid, because Angel has the winning strategy of choosing
the left action x := x+ 1; (x′ = x2)d until x ≥ 0 followed by the right action x := x− 1
until 0 ≤ x < 1. By choosing the left action, x ≥ 0 will ultimately happen, because
x := x+ 1 increases x by 1 and x′ = x2 can only make x bigger, because the derivative
x2 is nonnegative. Once x ≥ 0, choosing the right action suitably often will reach the
postcondition 0 ≤ x < 1 to allow Angel to win the game. Note that Angel also wins
immediately with the left action from x = −1, since the differential equation is stuck
at x = 0. The following minor variation, however, is not valid:

〈(x := x+ 1; (x′ = x2)d ∪ (x := x− 1 ∩ x := x− 2))
∗〉(0 ≤ x < 1)
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because Demon can spoil Angel’s efforts by choosing x := x− 2 in his choice (∩) to make
x negative whenever 1 ≤ x < 2, and then increasing x to 1.5 again via (x′ = x2)d when
Angel takes the left choice. Angel will never reach 0 ≤ x < 1 that way unless this was
true initially already. This phenomenon is examined in Section 3.1 in more detail.

Example 2.9 (WALL·E and EVE). The dGL formula (1) from Example 2.3 is valid,
because Angel EVE indeed has a winning strategy to get close to WALL·E by mimick-
ing Demon’s choices. Recall that Demon WALL·E controls the repetition ×, so the fact
that the hybrid game starts EVE off close to WALL·E is not sufficient for EVE to win
the game. The hybrid game in (1) would be trivial if Angel were to control the repe-
tition (because she would then win just by choosing not to repeat) or were to control
the differential equation (because she would then win by always evolving for duration
0). The analysis of (1) is more difficult if the first two lines in the hybrid game are
swapped so that Angel EVE chooses g before Demon WALL·E chooses u.

3. META-PROPERTIES
This section analyzes meta-properties and semantical properties of the hybrid games
of dGL, including determinacy of hybrid games, hybrid game equivalences such as re-
duction of evolution domains, and closure ordinals of hybrid games.

3.1. Determinacy
Every particular game play in a hybrid game is won by exactly one player, because
hybrid games are zero-sum and there are no draws. That alone does not imply de-
terminacy, i.e. that, from all initial situations, either one of the players always has a
winning strategy to force a win, regardless of how the other player chooses to play.

In order to understand the importance of determinacy for classical logics, consider
the semantics of repetition, defined as a least fixpoint, which is crucial because that
gives a well-founded repetition. Otherwise, the filibuster formula would not have a
well-defined truth-value:

〈(x := 0 ∩ x := 1)
∗〉x = 0 (4)

It is Angel’s choice whether to repeat (∗), but every time Angel repeats, it is Demon’s
choice (∩) whether to play x := 0 or x := 1. The game in this formula never deadlocks,
because every player always has a remaining move (here even two). But, without the
least fixpoint, the game would have perpetual checks, because no strategy helps either
player win the game but just prevents the other player from winning; see Fig. 2.

Demon can move x := 1 and would win, but Angel observes this and decides to repeat,
so Demon can again move x := 1. Thus (unless Angel is lucky starting from an initial
state where she has won already) every strategy that one player has to reach x = 0 or
x = 1 could be spoiled by the other player so the game would not be determined, i.e.
no player has a winning strategy. Every player can let his opponent win, but would
not have a strategy to win himself. Because of the least fixpoint ςα∗(·) in the seman-
tics, however, repetitions are well-founded and, thus, have to stop eventually (after an
arbitrary unbounded number of rounds). Hence, in the example in Fig. 2, Demon still
wins and formula (4) is ⊥, unless x = 0 holds initially (the unknown initial value is
marked X in Fig. 2). In other words, the formula in (4) is equivalent to x = 0. The same
phenomenon happens in Example 2.8. Likewise, the dual filibuster game formula

x = 0→ 〈(x := 0 ∪ x := 1)×〉x = 0 (5)

is (determined and) valid, because Demon has to stop repeating × eventually so that
Angel wins if she patiently plays x := 0 each time. Similarly, the game in the following
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0
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repeat

0
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st
op

repeat

1
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st
op

0

0
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repeat

0
�

st
op

repeat

X
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op

Fig. 2. The filibuster game formula 〈(x := 0 ∩ x := 1)∗〉x = 0 is false (unless x = 0 initially), but would be
non-determined without least fixpoints (strategies follow thick actions). Angel’s action choices are illustrated
by dashed edges from dashed diamonds, Demon’s action choices by solid edges from solid squares, and
double lines indicate bisimilar states with the same continuous state and a subgame of the same structure
of subsequent choices. States where Angel wins are marked � and states where Demon wins by �.

hybrid filibuster formula would not be determined without the least fixpoint semantics

〈(x := 0;x′ = 1d)
∗〉x = 0

because Demon could always evolve continuously to some state where x > 0 and Angel
would never want to stop. Since Angel will have to stop eventually, she loses and the
formula is ⊥ unless x = 0 holds initially.

It is also important that Angel can only choose real durations r ∈ R≥0 for a continu-
ous evolution game x′ = θ&ψ, not infinity∞, so she ultimately stops. Otherwise

〈(x′ = 1d;x := 0)
∗〉x = 0 (6)

would not be determined, because Angel wants to repeat (unless x = 0 initially) and
x := 0 will make her win once she stops after a nonzero number of repetitions. Yet,
if Demon could choose ∞ as the duration for the continuous evolution game x′ = 1d,
Angel would never get to play the subsequent x := 0 to win. Since durations need to be
real numbers, though, each continuous evolution ultimately has to stop, so the formula
in (6) is valid even if Demon can postpone Angel’s victory arbitrarily long.

In order to make sure that dGL is a classical two-valued modal logic, hybrid games
have no draws. But, because modalities refer to the existence of winning strategies,
they only receive classical truth values if, from each state, one of the players has a
winning strategy for complementary winning conditions of a hybrid game α. The log-
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ical setup of dGL makes this determinacy proof very simple, without the need to use,
e.g., the deep [Friedman 1971b] Borel determinacy theorem for winning conditions
that are Borel in the product topology induced on game trees by the discrete topology
of actions [Martin 1975], which does not even fit to the structure of arbitrarily nested
inductive and coinductive fixpoints of the winning region semantics of dGL.

THEOREM 3.1 (CONSISTENCY & DETERMINACY). Hybrid games are consistent
and determined, i.e. � ¬〈α〉¬φ↔ [α]φ.

PROOF. The proof shows by a straightforward induction on the structure of α that
ςα(X{){ = δα(X) for all X ⊆ S and all I with some set of states S, which implies the
validity of ¬〈α〉¬φ↔ [α]φ using X def

= [[φ]]
I .

(1) ςx:=θ(X{){ = {s ∈ S : s
[[θ]]s
x 6∈ X}{ = ςx:=θ(X) = δx:=θ(X)

(2) ςx′=θ&ψ(X{){ = {ϕ(0) ∈ S : ϕ(r) 6∈ X for some 0 ≤ r ∈ R and some (differentiable)
ϕ : [0, r]→ S such that dϕ(t)(x)

dt (ζ) = [[θ]]ϕ(ζ) and ϕ(ζ) ∈ [[ψ]]
I for all 0 ≤ ζ ≤ r}{ =

δx′=θ&ψ(X), because the set of states from which there is no winning strategy for
Angel to reach a state in X{ prior to leaving [[ψ]]

I along x′ = θ&ψ is exactly the set
of states from which x′ = θ&ψ always stays in X (until leaving [[ψ]]

I in case that
ever happens).

(3) ς?ψ(X{){ = ([[ψ]]
I ∩X{){ = ([[ψ]]

I
){ ∪ (X{){ = δ?ψ(X)

(4) ςα∪β(X{){ = (ςα(X{) ∪ ςβ(X{)){ = ςα(X{){ ∩ ςβ(X{){ = δα(X) ∩ δβ(X) = δα∪β(X)

(5) ςα;β(X{){ = ςα(ςβ(X{)){ = ςα(δβ(X){){ = δα(δβ(X)) = δα;β(X)

(6) ςα∗(X{){ =
(⋂
{Z ⊆ S : X{ ∪ ςα(Z) ⊆ Z}

){
=
(⋂
{Z ⊆ S : (X ∩ ςα(Z){){ ⊆ Z}

){
=
(⋂
{Z ⊆ S : (X ∩ δα(Z{)){ ⊆ Z}

){
=
⋃
{Z ⊆ S : Z ⊆ X ∩ δα(Z)} = δα∗(X). 10

(7) ςαd(X{){ = (ςα((X{){){){ = δα(X{){ = δαd(X)

One direction of Theorem 3.1 implies � ¬〈α〉¬φ→ [α]φ, i.e. � 〈α〉¬φ ∨ [α]φ, whose valid-
ity means that, from all initial states, either Angel has a winning strategy to achieve
¬φ or Demon has a winning strategy to achieve φ. That is, hybrid games are deter-
mined, because there are no states from which none of the players has a winning
strategy (for the same hybrid game α and complementary winning conditions ¬φ and
φ, respectively). At least one player, thus, has a winning strategy for complementary
winning conditions. The other direction of Theorem 3.1 implies � [α]φ→ ¬〈α〉¬φ, i.e.
� ¬([α]φ ∧ 〈α〉¬φ), whose validity means that there is no state from which Demon has
a winning strategy to achieve φ and, simultaneously, Angel has a winning strategy to
achieve ¬φ. It cannot be that both players have a winning strategy for complemen-
tary conditions from the same state. That is, hybrid games are consistent, because at
most one player has a winning strategy for complementary winning conditions. Along
with modal congruence rules, which hold for dGL, Theorem 3.1 makes dGL a classical
(multi)modal logic [Chellas 1980], yet with modalities indexed by hybrid games.

Instead of giving a semantics to [·] in terms of the existence of a winning strategy for
Demon, Theorem 3.1 could have been used as a definition of [·]. That would have been
easier, but would have obscured determinacy and the role of [·] as the winning strategy
operator for Demon.

10The penultimate equation follows from the µ-calculus equivalence νZ.Υ(Z) ≡ ¬µZ.¬Υ(¬Z) and the fact
that least pre-fixpoints are fixpoints and that greatest post-fixpoints are fixpoints for monotone functions.
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3.2. Hybrid Game Equivalences
As usual in programming languages, the same hybrid game can have multiple different
syntactical representations. Some equivalence transformations on hybrid games can
be useful to transform hybrid games into a conceptually simpler form.

Definition 3.2 (Hybrid game equivalence). Hybrid games α and β are equivalent,
denoted α ≡ β, if ςα(X) = ςβ(X) for all X and all I.

By Theorem 3.1, α and β are equivalent iff δα(X) = δβ(X) for all X and all I.

Remark 3.3. The equivalences

(α ∪ β)d ≡ αd ∩ βd, (α;β)d ≡ αd;βd, (α∗)d ≡ (αd)×, αdd ≡ α
on hybrid games can transform every hybrid game α into an equivalent hybrid game in
which d only occurs right after atomic games or as part of the definition of the derived
operators ∩ and ×. Other equivalences include (x′ = θ)

∗ ≡ x′ = θ and (x′ = θ&ψ)
∗ ≡

?> ∪ x′ = θ&ψ.

Quite unlike in hybrid systems and (poor test) differential dynamic logic [Platzer
2008; Platzer 2012a], every hybrid game containing a differential equation x′ = θ&ψ
with evolution domain constraints ψ can be replaced equivalently by a hybrid game
without evolution domain constraints (even using poor tests, i.e. each test ?ψ uses only
first-order formulas ψ). Evolution domains are definable in hybrid games and can,
thus, be removed equivalently from all hybrid games.

LEMMA 3.4 (DOMAIN REDUCTION). Evolution domains of differential equations
are definable as hybrid games: For every hybrid game there is an equivalent hybrid
game that has no evolution domain constraints, i.e. all continuous evolutions are of the
form x′ = θ.

PROOF. For notational convenience, assume the (vectorial) differential equation
x′ = θ(x) to contain a clock x′0 = 1 and that t0 and z are fresh variables. Then
x′ = θ(x) &ψ(x) is equivalent to the hybrid game:

t0 := x0;x′ = θ(x); (z := x; z′ = −θ(z))d; ?(z0 ≥ t0 → ψ(z)) (7)

t

x, z

ψ

z := x
Angel plays forward game, reverts flow and time x0;
Demon checks ψ in backwards game until initial t0x′ = θ(x)

t0 := x0 r

z′ = −θ(z)

Fig. 3. “There and back again game”: Angel evolves x forwards in time along x′ = θ(x), Demon checks
evolution domain backwards in time along z′ = −θ(z) on a copy z of the state vector x

See Fig. 3 for an illustration. Suppose the current player is Angel. The idea behind
game equivalence (7) is that the fresh variable t0 remembers the initial time x0, and
Angel then evolves forward along x′ = θ(x) for any arbitrary amount of time (Angel’s
choice). Afterwards, the opponent Demon copies the state x into a fresh variable (vec-
tor) z that he can evolve backwards along (z′ = −θ(z))d for any arbitrary amount
of time (Demon’s choice). The original player Angel must then pass the challenge
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?(z0 ≥ t0 → ψ(z)), i.e. Angel loses immediately if Demon was able to evolve backwards
and leave region ψ(z) while satisfying z0 ≥ t0, which checks that Demon did not evolve
backward for longer than Angel evolved forward. Otherwise, when Angel passes the
test, the extra variables t0, z become irrelevant (they are fresh) and the game contin-
ues from the current state x that Angel chose in the first place (by selecting a duration
for the evolution that Demon could not invalidate).

Lemma 3.4 eliminates all evolution domain constraints equivalently in hybrid games
from now on. While evolution domain constraints are fundamental parts of hybrid sys-
tems [Alur et al. 1992; Henzinger et al. 1995; Branicky et al. 1998; Platzer 2008], they
turn out to be mere syntactic sugar for hybrid games. In that sense, hybrid games are
more fundamental than hybrid systems, because they feature elementary operators
and do not need built-in support for evolution domain constraints.

3.3. Strategic Closure Ordinals
In order to examine whether the dGL semantics could be implemented directly to com-
pute winning regions for dGL formulas by a reachability computation or backwards
induction for games, this section investigates how many iterations the fixpoint for the
semantics ςα∗(X) of repetition needs. The number of required iterations marks a sig-
nificant difference in analytic complexity of hybrid games compared to hybrid systems.

The semantics, ςα∗(X), of α∗ is a least fixpoint and Knaster-Tarski’s seminal fixpoint
theorem entails that every least fixpoint of a monotone function on a complete lattice
corresponds to some sufficiently large iteration. That is, there is some ordinal λ̄ at
which the λ̄th iteration, ς λ̄α(X), of ςα(·) coincides with ςα∗(X), i.e. ςα∗(X) = ς λ̄α(X); see
Fig. 4. How big is λ̄, i.e. how often does ςα(·) need to iterate to obtain ςα∗(X)?

ςα∗(X) · · · ς3α(X) ς2α(X) ςα(X) X

Fig. 4. Least fixpoint ςα∗ (X) corresponds to some higher iterate ςλ̄α(X) of ςα(·) from winning condition X.

Recall that ordinals extend natural numbers and support (non-commutative) addi-
tion, multiplication, and exponentiation, ordered as:

0 < 1 < 2 < . . . ω < ω + 1 < ω + 2 < . . . ω · 2 < ω · 2 + 1 < . . . ω · 3 < ω · 3 + 1 < . . .

ω2 < ω2 + 1 < . . . ω2 + ω < ω2 + ω + 1 < . . . ωω < . . . ωω
ω

< . . . ωCK
1 < . . . ω1 < . . .

The first infinite ordinal is ω, the Church-Kleene ordinal ωCK
1 , i.e. the first nonrecursive

ordinal, and ω1 the first uncountable ordinal. Recall that every ordinal κ is either a
successor ordinal, i.e. the smallest ordinal κ = ι + 1 greater than some ordinal ι, or a
limit ordinal, i.e. the supremum of all smaller ordinals. Depending on the context, 0 is
considered as a limit ordinal or as a separate case.
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3.3.1. Iterations and Fixpoints. For each hybrid game α, the semantics ςα(·) is a monotone
operator on the complete powerset lattice (Lemma 2.7). The κth iterate, ςκα(·), of ςα(·)
is defined by a minor variation of Kozen’s formulation of Knaster-Tarski [Harel et al.
2000, Theorem 1.12], obtained by considering the sublattice with x at the bottom.

Let τ : L → L be a monotone operator on a partial order L, then defining τλ(x)
def
=

x ∪
⋃
κ<λ

τ(τκ(x)) for all ordinals λ is equivalent to defining:

τ0(x)
def
= x

τκ+1(x)
def
= x ∪ τ (τκ(x))

τλ(x)
def
=
⋃
κ<λ

τκ(x) λ 6= 0 a limit ordinal

Yet,
⋃

and, thus, τλ(x) are only guaranteed to exist if L is a complete partial order.

THEOREM 3.5 (KNASTER-TARSKI [HAREL ET AL. 2000, THEOREM 1.12]). For ev-
ery complete lattice L, there is an ordinal λ̄ of at most the cardinality of L such that,
for each monotone τ : L → L, i.e. τ(x) ⊆ τ(y) for all x ⊆ y, the fixpoints of τ in L are a
complete lattice and for all x ∈ L and all ordinals κ:

τ †(x)
def
=
⋂
{z ∈ L : x ⊆ z, τ(z) ⊆ z} = τ λ̄(x) = τ λ̄+κ(x)

The least ordinal λ̄ with the property in Theorem 3.5 is called closure ordinal of τ .
The operator τκ(·) enjoys useful properties. By its extensive / inflationary definition,

τκ(x) is not just monotone in x but also monotone and homomorphic in κ. Since τ0(x) =
x, this works for all ordinals.

LEMMA 3.6 (INDUCTIVE HOMOMORPHISM). τ is inductive, i.e. τκ(x) ⊆ τλ(x) for all
κ ≤ λ and homomorphic in κ, i.e. τκ+λ(x) = τλ(τκ(x)) for all κ, λ.

PROOF. Inductiveness, i.e. τκ(x) ⊆ τλ(x) for κ ≤ λ, which is monotonicity in
κ, holds by definition [Harel et al. 2000, Lemma 1.11]. Homomorphy in κ, i.e.
τκ+λ(x) = τλ(τκ(x)) can be proved by induction on λ, which is either 0, a successor
ordinal (second line) or a limit ordinal 6= 0 (third line):

τκ+0(x) = τκ(x) = τ0(τκ(x))

τκ+(λ+1)(x) = x ∪ τ(τκ+λ(x)) = x ∪ τ(τλ(τκ(x))) = τκ(x) ∪ τ(τλ(τκ(x))) = τλ+1(τκ(x))

τκ+λ(x) =
⋃

ι<κ+λ

τ ι(x) =
⋃
ι<κ

τ ι(x) ∪
⋃
ι<λ

τκ+ι(x)

=
⋃
ι<λ

τκ+ι(x) =
⋃
ι<λ

τ ι(τκ(x)) = τλ(τκ(x))

By Theorem 3.5, there is an ordinal λ̄ of cardinality at most that of R such that
ςα∗(X) = ς λ̄α(X) for all α and all X, because the powerset lattice is complete and ςα(·)
monotone by Lemma 2.7. This iterative construction τ λ̄(X) corresponds to backward
induction in classical game theory [von Neumann and Morgenstern 1955; Aumann
1995], yet it terminates at ordinal λ̄ which is not necessarily finite.

3.3.2. Scott-Continuity. The semantics of repetitions in hybrid systems repeats some
finite number of times [Platzer 2012a]. If the semantics of dGL were Scott-continuous,
this would be the case for dGL as well, because the closure ordinal of Scott-continuous
operators on a complete partial order is ≤ω by Kleene’s fixpoint theorem. Dual-free α
are indeed Scott-continuous, in particular, the closure ordinal for hybrid systems is ω.
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LEMMA 3.7 (SCOTT-CONTINUITY OF d-FREE dGL). The dGL semantics of d-free α is
Scott-continuous, i.e. ςα(

⋃
n∈J Xn) =

⋃
n∈J ςα(Xn) for all families {Xn}n∈J with index

set J .

PROOF. By Lemma 2.7,
⋃
n∈J ςα(Xn) ⊆ ςα(

⋃
n∈J Xn). The converse inclusion can be

shown by a simple induction on the structure of α: ςα(
⋃
n∈J Xn) ⊆

⋃
n∈J ςα(Xn). IH is

short for induction hypothesis.

(1) ςx:=θ(
⋃
n∈J Xn) = {s ∈ S : s

[[θ]]s
x ∈

⋃
n∈J Xn} ⊆

⋃
n∈J{s ∈ S : s

[[θ]]s
x ∈ Xn} =⋃

n∈J ςx:=θ(Xn), since s[[θ]]s
x ∈

⋃
n∈J Xn implies s[[θ]]s

x ∈ Xn for some n.
(2) ςx′=θ&ψ(

⋃
n∈J Xn) = {ϕ(0) ∈ S : dϕ(t)(x)

dt (ζ) = [[θ]]ϕ(ζ) and ϕ(ζ) ∈ [[ψ]]
I for

all ζ ≤ r for some (differentiable) ϕ : [0, r]→ S such that ϕ(r) ∈
⋃
n∈J Xn} ⊆⋃

n∈J ςx′=θ&ψ(Xn) = {ϕ(0) ∈ S : . . . ϕ(r) ∈ Xn}, because ϕ(r) ∈
⋃
n∈J Xn implies

ϕ(r) ∈ Xn for some n.
(3) ς?ψ(

⋃
n∈J Xn) = [[ψ]]

I ∩
⋃
n∈J Xn =

⋃
n∈J([[ψ]]

I ∩Xn) =
⋃
n∈J ς?ψ(Xn)

(4) ςα∪β(
⋃
n∈J Xn) = ςα(

⋃
n∈J Xn) ∪ ςβ(

⋃
n∈J Xn)

IH
= (

⋃
n∈J ςα(Xn)) ∪ (

⋃
n∈J ςβ(Xn)) =⋃

n∈J(ςα(Xn) ∪ ςβ(Xn)) =
⋃
n∈J ςα∪β(Xn)

(5) ςα;β(
⋃
n∈J Xn) = ςα(ςβ(

⋃
n∈J Xn))

IH
= ςα(

⋃
n∈J ςβ(Xn))

IH
=

⋃
n∈J ςα(ςβ(Xn)) =⋃

n∈J ςα;β(Xn)
(6) ςα∗(

⋃
n∈J Xn) = (

⋃
n∈J Xn) ∪ ςα(ςα∗(

⋃
n∈J Xn)) is the least fixpoint. Prove that⋃

n∈J ςα∗(Xn) is a fixpoint, which implies ςα∗(
⋃
n∈J Xn) ⊆

⋃
n∈J ςα∗(Xn). Indeed,

(
⋃
n∈J Xn) ∪ ςα(

⋃
n∈J ςα∗(Xn))

IH
= (

⋃
n∈J Xn) ∪

⋃
n∈J ςα(ςα∗(Xn)) =

⋃
n∈J(Xn ∪

ςα(ςα∗(Xn)) =
⋃
n∈J ςα∗(Xn). The last equation uses that ςα∗(Xn) is a fixpoint.

But ςα(·) is not generally Scott-continuous, so λ̄ might potentially be greater than ω
for hybrid games. Games with both d and ∗ do not generally have a Scott-continuous
semantics nor an ω-chain continuous semantics, i.e. they are not even continuous for a
monotonically increasing chain X0 ⊆ X1 ⊆ X2 ⊆ . . . with ω as index set:

R = ςy:=y+1×(
⋃
n<ω

(−∞, n]) *
⋃
n<ω

ςy:=y+1×((−∞, n]) = ∅

hence � 〈y := y + 1×〉∃n :N y ≤ n but 2 ∃n :N 〈y := y + 1×〉y ≤ n

This example shows that, even though Angel wins this game, there is no upper bound
< ω on the number of iterations it takes her to win, because Demon could repeat
y := y + 1× arbitrarily often. This phenomenon is directly related to a failure of the
Barcan axiom (Section 4.5). The quantifier ∃n :N over natural numbers is not essential
here [Platzer 2008] but mere convenience to make both lines above match directly.

If τ is countably-continuous, i.e. continuous for families with countable index sets,
on a complete partial order, then its closure ordinal is λ̄ ≤ ω1. But this is not the case
for ςα(·) either, by the above counterexample with countable index set ω.

A function τ on sets is κ-based, for an ordinal κ, if for allX, x ∈ τ(X) implies x ∈ τ(Y )
for some Y ⊆ X of cardinality <κ. If τ is κ-based, then its closure ordinal is ≤κ [Aczel
1977, Proposition 1.3.4]. The semantics ςα(·) is not even ω1-based, however, because of
Lemma 2.7 and removing just one state from the winning condition may lose states in
the winning region:

[0,∞) = ςx′=1d([0,∞))

but 0 6∈ ςx′=1d([0,∞) \ {a}) = (a,∞) for all a > 0
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Consequently, classical bounds on closure ordinals all fail to apply due to the combina-
tion of d, ∗, and differential equations that makes hybrid games challenging.

3.3.3. Transfinite Closure Ordinals. When will the iteration for the fixpoints in the win-
ning region definitions stop? Hybrid games may have higher closure ordinals, because
ω many repetitions of the operator (and even <ωCK

1 many) may not be enough to com-
pute winning regions. In other words, ςα∗(X) will coincide with iterations ςκα(X) as
illustrated in Fig. 4, but this may need many more than ω iterations to terminate.

THEOREM 3.8 (CLOSURE ORDINALS). The semantics of dGL has a closure ordinal
≥ ωCK

1 , i.e. for all λ < ωCK
1 , there are α and X such that ςα∗(X) 6= ςλα(X).

PROOF. For concreteness, the proof first shows the weaker bound ≥ ω ·2. Minor syn-
tactic variations lead to vastly different closure ordinals (Appendix C), so the closure
ordinal is not a simple function of the syntactic structure.

To see that the closure ordinal is > ω even with just one variable, a single loop and
dual, consider the set of states in which the following dGL formula is true:

〈(x := x+ 1;x′ = 1d︸ ︷︷ ︸
α

∪ x := x− 1︸ ︷︷ ︸
β

)
∗〉 (0 ≤ x < 1) (8)

The winning regions for this dGL formula stabilize after ω·2 iterations, because ω many
iterations are necessary to show that all positive reals can be reduced to [0, 1) by choos-
ing β sufficiently often, whereas another ω many iterations are needed to show that
choice α, which makes progress ≥ 1 but possibly more under Demon’s control, can turn
x into some positive real. It is easy to see that ςωα∪β([0, 1)) =

⋃
n<ω ς

n
α∪β([0, 1)) = [0,∞),

because ςnα∪β([0, 1)) = [0, n+ 1) holds for all n ∈ N by a simple inductive argument:

ς0α∪β([0, 1)) = [0, 1)

ςn+1
α∪β ([0, 1)) = [0, 1) ∪ ςα∪β(ςnα∪β([0, 1))) = [0, 1) ∪ ςα∪β([0, n+ 1))

= [0, 1) ∪ ςα([0, n+ 1)) ∪ ςβ([0, n+ 1)) = [0, 1) ∪ ∅ ∪ [1, n+ 1 + 1)

But the iteration for the winning region does not stop at ω, as ςω+n
α∪β ([0, 1)) = [−n,∞)

holds for all n ∈ N by another simple inductive argument:

ςω+n+1
α∪β ([0, 1)) = [0, 1) ∪ ςα∪β(ςω+n

α∪β ([0, 1)))

= [0, 1) ∪ ςα∪β([−n,∞))

= [0, 1) ∪ ςα([−n,∞)) ∪ ςβ([−n,∞))

= [−n− 1,∞) ∪ [−n,∞)

Thus, ςω·2α∪β([0, 1)) = ςω+ω
α∪β ([0, 1)) =

⋃
n<ω ς

ω+n
α∪β ([0, 1)) = R = ςα∪β(R). In this case, the

closure ordinal is ω · 2 > ω, since ς(α∪β)∗([0, 1)) = R 6= ςω+n
α∪β ([0, 1)) for all n ∈ N.

To show that the closure ordinal is ≥ ωCK
1 , fix an ordinal λ < ωCK

1 , i.e. a recursive
ordinal. Let ≺ ⊆ M ×M be a corresponding recursive well-order of order type λ on a
corresponding set M ⊆ R.11 That is, let f≺ a recursive function such that the relation
x ≺ y given by f≺(x, y) = 0 defines a well-order on the set M def

= {x ∈ R : f≺(x, y) =
0 orf≺(y, x) = 0 for some y ∈ R}. Without loss of generality, assume that 0 ∈ M is the
least element of M with respect to ≺. Since ≺ is recursive, denote by ?f≺(x, y) = 0

11A well-order is a linear order ≺ on M in which every non-empty subset has a least element. Two sets
M,N have equal order type iff they have an order-isomorphism ϕ : M → N , i.e. a monotone bijection with
monotone inverse. More background can be found in the literature [Rogers 1987].
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the program that does not change the value of variables x, y and that implements the
recursive function that terminates if x ∈ M and either x ≺ y or y 6∈ M and that
otherwise fails (like ?(0 = 1) would). Consider the dGL formula

〈
(
y := x; (x′ = 1;x′ = −1; ?f≺(x, y) = 0)d︸ ︷︷ ︸

α

)∗〉x = 0 (9)

By definition of ?f≺(x, y) = 0, formula (9) is valid, because x is in M after each suc-
cessful run of ?f≺(x, y) = 0, and ≺ is a well-order on M with least element 0. By
construction, ςα(X) = {a ∈ R : b ∈ X for all b with f≺(b, a) = 0} for X ⊆ R. Since ≺ has
order type λ, ςκα({0}) 6= ςλα({0}) = M for all κ < λ, otherwise the ςια({0}) would induce
a monotone injection (even order-isomorphism) from M to κ < λ, which is a contra-
diction. Indeed, ϕ : M → κ;x 7→ inf{ι : x ∈ ςια({0})} would otherwise be a monotone
injection as x ≺ y in M implies ϕ(x) < ϕ(y), because ϕ(x) ≥ ϕ(y) implies y ∈ ςα(X) for
a set X = ς

ϕ(y)−1
α ({0}) that does not contain x, contradicting x ≺ y. Note that ϕ(y) is a

successor ordinal and hence ϕ(y)−1 defined, since ϕmaps into successor ordinals and 0
by the definition of ϕ. Consequently, ςλα({0}) = M 6= ςλ+1

α ({0}) = ςα(M) = R = ςα∗({0}),
where M 6= R because λ is recursive hence countable and ≺ a linear order on M . Thus,
the closure ordinal for formula (9) is λ+1 > λ. Hence, for all recursive ordinals λ, there
is a hybrid game with a bigger closure ordinal. So, the closure ordinal is ≥ ωCK

1 .

By Theorem 3.8, the closure ordinal for dGL is between ωCK
1 and ordinals of the car-

dinality of the reals (Theorem 3.5). The same proof works for other well-orderings that
are definable in hybrid games, not just those that are definable by classical recursive
functions. The proof does not permit arbitrary well-orderings of the real numbers, how-
ever, because those may not be definable by hybrid games. Hence, the closure ordinal
for dGL is at least ωHG

1 , defined as the first ordinal λ that does not have a well-ordering
of order type λ that is definable by hybrid games. This ordinal satisfies ωCK

1 ≤ ωHG
1 and

is at most of the cardinality of the reals. A more precise grasp on ωHG
1 is in Section 5.

The fact that hybrid games require highly transfinite closure ordinals has a number
of consequences. It makes reachability computations and backwards induction diffi-
cult, because they only terminate after significantly more than ω-infinitely many steps.
It requires higher bounds on the number of repetitions played in hybrid games. It
causes classical arguments for relative completeness to fail (Section 4.3). And it causes
acute semantical differences that are only visible in hybrid games, not in hybrid sys-
tems. For example, the dGL semantics is more general than defining ςα∗(X) to be trun-
cated to ω-repetition ςωα (X) =

⋃
n<ω ς

n
α(X), which misses out on the existence of per-

fectly natural winning strategies. The semantics of dGL is also different than advance
notice semantics. For reference, both comparisons are elaborated in Appendix B.

4. AXIOMATIZATION
Section 2 has defined dGL so that every game play has exactly one winner. Section 3
has shown that hybrid games are determined, i.e. from every state, exactly one of the
players has a winning strategy for complementary winning conditions. But how can
one find out which of the players that is? In principle, one could follow the iterated
winning region construction according to the semantics until reaching a fixpoint (Sec-
tion 3.3), which corresponds to the reachability computation underlying model check-
ing as well as to the backwards induction technique in games. But iterated winning
region constructions would not generally terminate in finite time, because the closure
ordinal is highly transfinite by Theorem 3.8.

Every dGL sentence without free variables or predicate symbols is either true or
false, because dGL is a classical logic. But the semantics of dGL formulas and hybrid
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games is ineffective, because computing the semantics, like classical model checking
or game solving would, requires transfinite computations for the winning regions. This
calls for other ways of proving the validity of dGL formulas.

Simple dGL formulas can be checked by a tableau procedure that expands all choices
and detects loops for termination as in the game tree examples (Fig. 2 and Appendix).
This principle, however, does not extend to more general hybrid games with differential
equations, inherently infinite state spaces, and which need higher ordinals of iteration
for computing winning regions by Theorem 3.8.

4.1. Proof Calculus
A Hilbert-type proof calculus for proving validity of dGL formulas is presented in Fig. 5.

[·] [α]φ↔ ¬〈α〉¬φ

〈:=〉 〈x := θ〉φ(x)↔ φ(θ)

〈′〉 〈x′ = θ〉φ↔ ∃t≥0 〈x := y(t)〉φ (y′(t) = θ)

〈?〉 〈?ψ〉φ↔ (ψ ∧ φ)

〈∪〉 〈α ∪ β〉φ↔ (〈α〉φ ∨ 〈β〉φ)

〈;〉 〈α;β〉φ↔ 〈α〉〈β〉φ

〈∗〉 (φ ∨ 〈α〉〈α∗〉φ)→ 〈α∗〉φ

〈d〉 〈αd〉φ↔ ¬〈α〉¬φ

M
φ→ ψ

〈α〉φ→ 〈α〉ψ

FP
(φ ∨ 〈α〉ψ)→ ψ

〈α∗〉φ→ ψ

Fig. 5. Differential game logic axiomatization

The logic dGL simultaneously generalizes logics of hybrid systems and logics of
discrete games and so does its proof calculus. The proof calculus of dGL shares ax-
ioms with differential dynamic logic [Platzer 2012a] and discrete game logic [Pauly
and Parikh 2003]. It is based on the first-order Hilbert calculus (modus ponens, uni-
form substitution, and Bernays’ ∀-generalization) with all instances of valid formulas
of first-order logic as axioms, including (decidable) first-order real arithmetic [Tarski
1951]. Write ` φ iff dGL formula φ can be proved with the dGL proof rules from dGL
axioms (Fig. 5). That is, a dGL formula is inductively defined to be provable in the dGL
calculus if it is an instance of a dGL axiom or if it is the conclusion (below the rule bar)
of an instance of one of the dGL proof rules M, FP, modus ponens, uniform substitution,
or ∀-generalization, whose premises (above the rule bar) are all provable.

The determinacy axiom [·] describes the duality of winning strategies for complemen-
tary winning conditions of Angel and Demon, i.e. that Demon has a winning strategy
to achieve φ in hybrid game α if and only if Angel does not have a counter strategy,
i.e. winning strategy to achieve ¬φ in the same game α. Axiom 〈:=〉 is for assignments
by substitution. Formula φ(θ) is obtained from φ(x) by substituting θ for x at all occur-
rences of x, provided x does not occur in the scope of a quantifier or modality binding
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x or a variable of θ. A modality containing x := or x′ outside the scope of tests ?ψ or
evolution domain constraints binds x, because it may change the value of x. In the dif-
ferential equation axiom 〈′〉, y(·) is the unique [Walter 1998, Theorem 10.VI] solution of
the symbolic initial value problem y′(t) = θ, y(0) = x. The duration t how long to follow
solution y is for Angel to decide, hence existentially quantified. It goes without saying
that variables like t are fresh in Fig. 5.

Axioms 〈?〉, 〈∪〉, and 〈;〉 are as in dynamic logic [Pratt 1976] and differential dynamic
logic [Platzer 2012a] except that their meaning is quite different, because they refer
to winning strategies of hybrid games instead of reachability relations of systems. The
challenge axiom 〈?〉 expresses that Angel has a winning strategy to achieve φ in the test
game ?ψ exactly from those positions that are already in φ (because ?ψ does not change
the state) and that satisfy ψ for otherwise she would fail the test and lose the game
immediately. The axiom of choice 〈∪〉 expresses that Angel has a winning strategy in
a game of choice α ∪ β to achieve φ iff she has a winning strategy in either hybrid
game α or in β, because she can choose which one to play. The sequential game axiom
〈;〉 expresses that Angel has a winning strategy in a sequential game α;β to achieve
φ iff she has a winning strategy in game α to achieve 〈β〉φ, i.e. to get to a position
from which she has a winning strategy in game β to achieve φ. The iteration axiom 〈∗〉
characterizes 〈α∗〉φ as a pre-fixpoint. It expresses that, if the game is already in a state
satisfying φ or if Angel has a winning strategy for game α to achieve 〈α∗〉φ, i.e. to get to
a position from which she has a winning strategy for game α∗ to achieve φ, then, either
way, Angel has a winning strategy to achieve φ in game α∗. The converse of 〈∗〉 can be
derived12 and is also denoted by 〈∗〉. The dual axiom 〈d〉 characterizes dual games. It
says that Angel has a winning strategy to achieve φ in dual game αd iff Angel does not
have a winning strategy to achieve ¬φ in game α. Combining dual game axiom 〈d〉 with
the determinacy axiom [·] yields〈αd〉φ↔ [α]φ, i.e. that Angel has a winning strategy to
achieve φ in αd iff Demon has a winning strategy to achieve φ in α. Similar reasoning
derives [αd]φ↔ 〈α〉φ.

Monotonicity rule M is the generalization rule of monotone modal logic C [Chellas
1980]. It expresses that, if the implication φ → ψ is valid, then, from wherever Angel
has a winning strategy in a hybrid game α to achieve φ, she also has a winning strategy
to achieve ψ, because ψ holds wherever φ does. So rule M expresses that easier objec-
tives are easier to win. Fixpoint rule FP characterizes 〈α∗〉φ as a least pre-fixpoint. It
says that, if ψ is another formula that is a pre-fixpoint, i.e. that holds in all states that
satisfy φ or from which Angel has a winning strategy in game α to achieve that condi-
tion ψ, then ψ also holds wherever 〈α∗〉φ does, i.e. in all states from which Angel has a
winning strategy in game α∗ to achieve φ.

As usual, all substitutions in Fig. 5 are required to be admissible to avoid capture
of variables, i.e. they require all variables x that are being replaced or that occur in
their replacements to not occur in the scope of a quantifier or modality binding x. The
uniform substitution rule US [Church 1956, §35,40] from first-order logic substitutes
all occurrences of predicate p(·) by a dGL formula ψ(·), i.e. it replaces all occurrences
of p(θ), for a vectorial term θ, by the corresponding ψ(θ) simultaneously:

(US)
φ

φ
ψ(·)
p(·)

In particular, rule US requires all relevant substitutions of ψ(θ) for p(θ) to be admissi-
ble and requires that no p(θ) occurs in the scope of a quantifier or modality binding a

12 φ ∨ 〈α〉〈α∗〉φ → 〈α∗〉φ derives by 〈∗〉. Thus, 〈α〉(φ ∨ 〈α〉〈α∗〉φ) → 〈α〉〈α∗〉φ by M. Hence, φ ∨ 〈α〉(φ ∨
〈α〉〈α∗〉φ)→ φ ∨ 〈α〉〈α∗〉φ by propositional congruence. Consequently, 〈α∗〉φ→ φ ∨ 〈α〉〈α∗〉φ by FP.
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variable of ψ(θ) other than the occurrences in θ. If admissible, the formula ψ(θ) can use
variables other than those in θ, hence, the case where p is a predicate symbol without
arguments enables rule US to generate all formula instances from the dGL axioms.
Rule US turns axioms into axiom schemes [Church 1956, §35,40], which is a powerful
principle that extends to modalities with program constants but is beyond the scope of
this article and is pursued in followup work [Platzer 2015b].

Despite their fundamentally different semantics (reachability relations on states of
hybrid system runs versus existence of winning strategies into sets of states of interac-
tive hybrid game play) and different dynamical effects (mixed discrete, continuous, and
adversarial dynamics), the axiomatization of dGL ends up surprisingly close to that of
the logic dL for hybrid systems [Platzer 2012a]. The primary difference of the axioma-
tization of dGL compared to that of dL is the addition of axiom 〈d〉 for dual games, the
absence of axiom K, absence of Gödel’s necessitation rule (dGL only has the monotone
modal rule M), absence of the Barcan formula (the converse Barcan formula is still
derivable13), absence of vacuity V, and absence of the hybrid version of Harel’s conver-
gence rule [Harel et al. 1977]. Due to the absence of K, the induction axiom and the
convergence axiom are absent in dGL, while corresponding proof rules are still valid;
see Section 4.5 for details. The induction rule (ind) is derivable from FP.

A proof of a classical result about the interderivability of FP with the induction rule
ind is included for the sake of completeness.

LEMMA 4.1 (INVARIANCE). Rule FP and the induction rule (ind) of dynamic logic
are interderivable in the dGL calculus:

(ind)
ψ → [α]ψ

ψ → [α∗]ψ

PROOF. Rule ind derives from FP: First derive the following minor variant

(indR)
ψ → [α]ψ ψ → φ

ψ → [α∗]φ

From ψ → [α]ψ and ψ → φ propositionally derive ψ → φ ∧ [α]ψ, from which contraposi-
tion and propositional logic yield ¬φ∨¬[α]ψ → ¬ψ. With [·], this gives ¬φ∨〈α〉¬ψ → ¬ψ.
Now FP derives 〈α∗〉¬φ → ¬ψ, which, by [·], is ¬[α∗]φ → ¬ψ, which gives ψ → [α∗]φ

by contraposition. The classical []-induction rule ind follows by φ
def≡ ψ. From ind, the

variant indR is derivable again by M on ψ → φ.
Rule FP derives from ind: From φ ∨ 〈α〉ψ → ψ, propositionally derive φ → ψ and

〈α〉ψ → ψ. By M, the former gives 〈α∗〉φ→ 〈α∗〉ψ. By contraposition, the latter derives
¬ψ → ¬〈α〉ψ, which gives ¬ψ → [α]¬ψ by [·]. Now ind derives ¬ψ → [α∗]¬ψ. By con-
traposition ¬[α∗]¬ψ → ψ, which, by [·], is 〈α∗〉ψ → ψ. Thus, 〈α∗〉φ → ψ by the formula
derived above.

Hence, the dGL calculus could have been equipped with rule ind instead of FP.

13 From φ → ∃xφ, derive 〈α〉φ → 〈α〉∃xφ by M, from which first-order logic derives ∀x (〈α〉φ → 〈α〉∃xφ)
and then derives ∃x 〈α〉φ→ 〈α〉∃xφ, since converse Barcan assumes that x is not free in the succedent.
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Example 4.2. The dual filibuster game formula (5) from Section 3.1 proves easily by
going back and forth between players:

∗
R x = 0→0 = 0 ∨ 1 = 0
〈:=〉x = 0→〈x := 0〉x = 0 ∨ 〈x := 1〉x = 0
〈∪〉x = 0→〈x := 0 ∪ x := 1〉x = 0
〈d〉 x = 0→¬〈(x := 0 ∪ x := 1)d〉¬x = 0
x = 0→¬〈x := 0 ∩ x := 1〉¬x = 0

[·] x = 0→[x := 0 ∩ x := 1]x = 0
ind x = 0→[(x := 0 ∩ x := 1)

∗
]x = 0

[·] x = 0→¬〈(x := 0 ∩ x := 1)
∗〉¬x = 0

〈d〉 x = 0→〈(x := 0 ∩ x := 1)
∗d〉x = 0

x = 0→〈(x := 0 ∪ x := 1)×〉x = 0

The unmarked proof steps expand the definitions for ∩ and ×. By pushing dualities
through with Remark 3.3, for example, the goal formula (5) at the bottom is equivalent
to x = 0→〈(x := 0 ∩ x := 1)

∗d〉x = 0, since assignments are unaffected by d.

A proof of a 〈α∗〉 property will be considered later, because the proof technique for
those properties comes from the completeness proof.

4.2. Soundness
Soundness studies whether all provable formulas are valid, which is crucial for ensur-
ing that dGL proofs always produce correct verification results about hybrid games.
The soundness proof uses that the following modal congruence rule derives from two
uses of the monotonicity rule M:

(RE)
φ↔ ψ

〈α〉φ↔ 〈α〉ψ

THEOREM 4.3 (SOUNDNESS). The dGL proof calculus in Fig. 5 is sound, i.e. all prov-
able formulas are valid.

PROOF. The dGL proof calculus is sound if all instances of axioms and proof rules
are sound. Proving soundness of an implication axiom φ→ ψ considers an interpreta-
tion I with a set of states S and requires showing [[φ]]

I ⊆ [[ψ]]
I . Proving soundness of an

equivalence axiom φ↔ ψ requires showing [[φ]]
I

= [[ψ]]
I . Proving soundness of a rule

φ

ψ

assumes that premise φ is valid, i.e. [[φ]]
I

= S in all interpretations I with a set of
states S, and requires showing that conclusion ψ is valid, i.e. [[ψ]]

I
= S in all I with S.

All proof rules of dGL except US satisfy the stronger condition of local soundness, i.e.
for all interpretations I with a set of states S: [[φ]]

I
= S implies [[ψ]]

I
= S. For the proof,

recall the µ-calculus notation where µZ.Υ(Z) denotes the least fixpoint of Υ(Z) and
νZ.Υ(Z) denotes the greatest fixpoint.

Soundness of modus ponens (MP) and ∀-generalization (from φ derive ∀xφ) is stan-
dard and not shown. The other axioms and rules are proved to be sound subsequently.

[·] [[[α]φ]]
I

= [[¬〈α〉¬φ]]
I is a corollary to determinacy (Theorem 3.1).
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〈:=〉 [[〈x := θ〉φ(x)]]
I

= ςx:=θ([[φ(x)]]
I
) = {s ∈ S : s

[[θ]]s
x ∈ [[φ(x)]]

I} = {s ∈ S : s ∈ [[φ(θ)]]
I} =

[[φ(θ)]]
I , where the penultimate equation holds by the substitution lemma. The clas-

sical substitution lemma is sufficient for first-order logic φ(θ). Otherwise the proof
of the substitution lemma for dL [Platzer 2010b, Lemma 2.2] generalizes to dGL or
follows from uniform substitution lemmas [Platzer 2015b].

〈′〉 [[〈x′ = θ〉φ]]
I

= ςx′=θ([[φ]]
I
) = {ϕ(0) ∈ S : for some ϕ:[0, r] → S so that ϕ(r) ∈ [[φ]]

I

and dϕ(t)(x)
dt (ζ) = [[θ]]ϕ(ζ) for all ζ ≤ r}. Also, [[∃t≥0 〈x := y(t)〉φ]]

I
= {s ∈ S : srt ∈

[[〈x := y(t)〉φ]]
I for some r ≥ 0} = {s ∈ S : srt ∈ {u ∈ S : u

[[y(t)]]u
x ∈ [[φ]]

I} for r ≥ 0} =

{s ∈ S : (srt )
[[y(t)]]srt
x ∈ [[φ]]

I for some r ≥ 0}. The inclusion “⊇” between both parts

holds, because the function ϕ(ζ) := (sζt )
[[y(t)]]

s
ζ
t

x solves the differential equation x′ = θ
by assumption. The inclusion “⊆” follows, because the solution of the (smooth) dif-
ferential equation x′ = θ is unique [Platzer 2010b, Lemma 2.1].

〈?〉 [[〈?ψ〉φ]]
I

= ς?ψ([[φ]]
I
) = [[ψ]]

I ∩ [[φ]]
I

= [[ψ ∧ φ]]
I

〈∪〉 [[〈α ∪ β〉φ]]
I

= ςα∪β([[φ]]
I
) = ςα([[φ]]

I
) ∪ ςβ([[φ]]

I
) = [[〈α〉φ]]

I ∪ [[〈β〉φ]]
I

= [[〈α〉φ ∨ 〈β〉φ]]
I

〈;〉 [[〈α;β〉φ]]
I

= ςα;β([[φ]]
I
) = ςα(ςβ([[φ]]

I
)) = ςα([[〈β〉φ]]

I
) = [[〈α〉〈β〉φ]]

I .
〈∗〉 Since [[〈α∗〉φ]]

I
= ςα∗([[φ]]

I
) = µZ.([[φ]]

I ∪ ςα(Z)) is a fixpoint, have [[〈α∗〉φ]]
I

= [[φ]]
I ∪

ςα([[〈α∗〉φ]]
I
). Thus, [[φ ∨ 〈α〉〈α∗〉φ]]

I
= [[φ]]

I ∪ [[〈α〉〈α∗〉φ]]
I

= [[φ]]
I ∪ ςα([[〈α∗〉φ]]

I
) =

[[〈α∗〉φ]]
I . Consequently, [[φ ∨ 〈α〉〈α∗〉φ]]

I ⊆ [[〈α∗〉φ]]
I .

〈d〉 [[〈αd〉φ]]
I

= ςαd([[φ]]
I
) = ςα(([[φ]]

I
){){ = ςα([[¬φ]]

I
){ = ([[〈α〉¬φ]]

I
){ = [[¬〈α〉¬φ]]

I by
Def. 2.6.

M Assume the premise φ→ ψ is valid in interpretation I, i.e. [[φ]]
I ⊆ [[ψ]]

I . Then the
conclusion 〈α〉φ→ 〈α〉ψ is valid in I, i.e. [[〈α〉φ]]

I
= ςα([[φ]]

I
) ⊆ ςα([[ψ]]

I
) = [[〈α〉ψ]]

I by
monotonicity (Lemma 2.7).

FP Assume the premise φ ∨ 〈α〉ψ → ψ is valid in I, i.e. [[φ ∨ 〈α〉ψ]]
I ⊆ [[ψ]]

I . That is,
[[φ]]

I ∪ ςα([[ψ]]
I
) = [[φ]]

I ∪ [[〈α〉ψ]]
I

= [[φ ∨ 〈α〉ψ]]
I ⊆ [[ψ]]

I . Thus, ψ is a pre-fixpoint of
Z = [[φ]]

I ∪ ςα(Z). Now using Lemma 2.7, [[〈α∗〉φ]]
I

= ςα∗([[φ]]
I
) = µZ.([[φ]]

I ∪ ςα(Z)) is
the least fixpoint and the least pre-fixpoint. Thus, [[〈α∗〉φ]]

I ⊆ [[ψ]]
I , which implies

that 〈α∗〉φ→ ψ is valid in I.
US Standard soundness proofs for US [Church 1956] generalize to dGL. A new proof

based on an elegant use of the soundness of RE is shown here. Assume the premise
φ is valid, i.e. [[φ]]

I
= S in all interpretations I with a set of states S. Assume that

the uniform substitution is admissible, otherwise rule US is not applicable and
there is nothing to show. It needs to be shown that φψ(·)

p(·) is valid, i.e. [[φ
ψ(·)
p(·) ]]

I
= S for

all I with S. Consider any particular interpretation J with set of states S. Without
loss of generality, assume p not to occur in ψ(·) (otherwise first replace all occur-
rences of p in ψ(·) by q and then use rule US again to replace those q by p). Thus,
by uniform substitution, p does not occur in φ

ψ(·)
p(·) and the value of J(p) is immate-

rial for the semantics of φψ(·)
p(·) . Therefore, pass to an interpretation I that modifies

J by changing the semantics of p such that [[p(x)]]
I

= [[ψ(x)]]
J for all values of x.

In particular, [[p(x)]]
I

= [[ψ(x)]]
I for all values of x, since p does not occur in ψ(x).

Thus, I |= ∀x (p(x)↔ ψ(x)). Since M is locally sound, so is the congruence rule
RE, which derives from M. The principle of substitution of equivalents [Hughes
and Cresswell 1996, Chapter 13] (from A↔ B derive Υ(A)↔ Υ(B), where Υ(B)
is the formula Υ(A) with some occurrences of A replaced by B), thus, general-
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izes to dGL and is locally sound. Hence, for all particular occurrences of p(u) in φ,
have I |= p(u)↔ ψ(u), which implies I |= φ↔ φ

ψ(u)
p(u) for the ordinary replacement

of p(u) by ψ(u). This process can be repeated for all occurrences of p(u), leading to
I |= φ↔ φ

ψ(·)
p(·) . Thus, S = [[φ]]

I
= [[φ

ψ(·)
p(·) ]]

I . Hence, [[φ
ψ(·)
p(·) ]]

J
= S, because p no longer

occurs after uniform substitution φ
ψ(·)
p(·) , since all occurrences of p with any argu-

ments will have been replaced at some point (since admissible). This implies that
φ
ψ(·)
p(·) is valid since interpretation J with set of states S was arbitrary.

This concludes the soundness proofs for all axioms and proof rules of the dGL proof
calculus, which is, thus, sound.

The proof calculus in Fig. 5 does not handle differential equations x′ = θ&ψ with
evolution domain constraints ψ (other than >). Yet, Lemma 3.4 from Section 3.2 elimi-
nates all evolution domain constraints equivalently from hybrid games, so that evolu-
tion domains no longer occur after this equivalence transformation.

4.3. Completeness
The converse of soundness is completeness, which is the question whether all valid for-
mulas are provable. Completeness of dGL is a challenging question related to a famous
open problem about completeness of propositional game logic [Parikh 1983]. Based on
Gödel’s second incompleteness theorem [Gödel 1931], dL is incomplete [Platzer 2008,
Theorem 2] and so is dGL. Hence, the right question to ask is that of relative com-
pleteness [Cook 1978; Harel et al. 1977], i.e. completeness relative to an oracle logic
L. Relative completeness studies the question whether a proof calculus has all proof
rules that are required for proving all valid formulas in the logic from tautologies in L.
Using a notion similar to Leivant’s [2009], the question of relative completeness can be
separated from that of expressivity. Relative completeness can be shown schematically
for dGL, i.e. the dGL calculus is complete relative to any expressive logic. This is to be
contrasted with dL, whose relative completeness proof was dependent on the particular
base logic and the specifics of its encoding [Platzer 2008]. In particular, the dGL com-
pleteness result is coding-free [Moschovakis 1974], i.e. independent of the particular
encoding. It only depends on the ability to express formulas.

Definition 4.4 (Expressive). A logic L is expressive (for dGL) if, for each dGL for-
mula φ there is a formula φ[ of L that is equivalent, i.e. � φ↔ φ[. Logic L is construc-
tively expressive if, in addition, the mapping φ 7→ φ[ is effective. The logic L is differen-
tially expressive for a given proof calculus if L is expressive and all equivalences of the
form 〈x′ = θ〉G↔ (〈x′ = θ〉G)[ are provable in that calculus. The logic L is assumed to
be closed under the connectives of first-order logic.14

Differential expressiveness ensures that the expressive logic L is equipped with proof
rules for concluding properties of differential equations from their equivalent expres-
sions in L. The differential equation axiom 〈′〉 is available for that purpose but lim-
ited to expressible solutions. More general ways of concluding properties of differen-
tial equations for differential expressiveness include differential invariants and differ-
ential cuts [Platzer 2010a], differential ghosts [Platzer 2012d], and the Euler axiom
[Platzer 2012a]. Concrete examples of differentially expressive logics are developed in
Section 4.4 after proving completeness schematically relative to any arbitrary differ-
entially expressive logic.

14 Alternatively, the equivalence ∃xφ ≡ 〈x′ = 1〉φ ∨ 〈x′ = −1〉φ can be used to consider quantifiers as ab-
breviations in differentially expressive logics L.
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The classical approach for completeness proofs [Cook 1978; Harel et al. 1977] pro-
ceeds in stages of first-order safety assertions, first-order termination assertions, and
then the repeated use of those to prove the general case. That approach does not work
for dGL, because hybrid games are so highly symmetric that they may contain oper-
ators whose proof depends on proofs about all other operators. A proof of F → 〈α〉G,
for example, may require proofs of formulas of the form A → [β]B, e.g., when α is
βd. Such an attempt of proving completeness for 〈α〉 formulas would need to assume
completeness for [β] formulas and vice versa, which is a cyclic assumption. Even more
involved cyclic arguments result from trying to prove completeness of 〈α∗〉 and [α∗]
formulas that way. Furthermore, the previous arguments for completeness of 〈α∗〉 for-
mulas [Cook 1978; Harel et al. 1977; Platzer 2008] depend on proofs about repetition
counts. Those do not work in a hybrid game setting, either, because guaranteed repeti-
tion bounds for winning repetition games can be recursively transfinite (Theorem 3.8).
Also compare how the semantical discrepancies discussed in Appendix B relate to rep-
etition bounds.

Instead, completeness for all dGL formulas of all kinds can be proved simultaneously,
yet with a more involved well-founded partial order on formulas that ensures that the
inductive argument in the completeness proof stays well-founded. This generality has
beneficial side-effects, though, because the resulting proof architecture enables a result
with minimal coding that makes it possible to exactly identify all complex cases.

THEOREM 4.5 (RELATIVE COMPLETENESS). The dGL calculus is a sound and com-
plete axiomatization of hybrid games relative to any differentially expressive logic L,
i.e. every valid dGL formula is provable in the dGL calculus from L tautologies.

PROOF. Write `L φ to indicate that dGL formula φ can be derived in the dGL proof
calculus from valid L formulas. It takes a moment’s thought to conclude that sound-
ness transfers to this case from Theorem 4.3, so it remains to prove completeness. For
every valid dGL formula φ it has to be proved that φ can be derived from valid L tau-
tologies within the dGL calculus: from � φ prove `L φ. The proof proceeds as follows:
By propositional recombination, inductively identify fragments of φ that correspond
to φ1 → 〈α〉φ2 or φ1 → [α]φ2 logically. Find structurally simpler formulas from which
these Angel or Demon properties can be derived taking care that the resulting formu-
las are simpler than the original one in a well-founded order. Finally, prove that the
original dGL formula can be re-derived from the subproofs in the dGL calculus.

By appropriate propositional derivations, assume φ to be given in conjunctive nor-
mal form. Assume that negations are pushed inside over modalities using the dualities
¬[α]φ ≡ 〈α〉¬φ and ¬〈α〉φ ≡ [α]¬φ that are provable by axiom [·], and that negations are
pushed inside over quantifiers using provable first-order equivalences ¬∀xφ ≡ ∃x¬φ
and ¬∃xφ ≡ ∀x¬φ. The remainder of the proof follows an induction on a well-founded
partial order ≺ induced on dGL formulas by the lexicographic ordering of the overall
structural complexity of the hybrid games in the formula and the structural complex-
ity of the formula itself, with the logic L placed at the bottom of the partial order ≺.
The base logic L is considered of lowest complexity by relativity, because � F immedi-
ately implies `L F for all formulas F of L. Well-foundedness of ≺ follows (formally from
projections into concatenations of finite trees), because the overall structural complex-
ity of hybrid games in any particular formula can only decrease finitely often at the
expense of increasing the formula complexity, which can, in turn, only decrease finitely
often to result in a formula in L. The only important property is that, if the structure
of the hybrid games in ψ is simpler than those in φ (somewhere simpler and nowhere
worse), then ψ ≺ φ even if the logical formula structure of ψ is larger than that of
φ, e.g., when ψ has more propositional connectives, quantifiers or modalities (but of
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smaller overall complexity hybrid games). In the following, IH is short for induction
hypothesis. The proof follows the syntactic structure of dGL formulas.

(0) If φ has no hybrid games, then φ is a first-order formula; hence provable by as-
sumption (even decidable [Tarski 1951] if in first-order real arithmetic, i.e. no un-
interpreted predicate symbols occur).

(1) φ is of the form ¬φ1; then φ1 is first-order and quantifier-free, as negations are
assumed to be pushed inside, so case 0 applies.

(2) φ is of the form φ1 ∧ φ2, then � φ1 and � φ2, so individually deduce simpler proofs
for `L φ1 and `L φ2 by IH, which combine propositionally to a proof for `L φ1 ∧ φ2.

(3) The case where φ is of the form ∃xφ2, ∀xφ2, 〈α〉φ2 or [α]φ2 is included in case 4 with
φ1 ≡ ⊥.

(4) φ is a disjunction and—without loss of generality—has one of the following forms
(otherwise use provable associativity and commutativity to reorder disjunction):

φ1 ∨ 〈α〉φ2

φ1 ∨ [α]φ2

φ1 ∨ ∃xφ2

φ1 ∨ ∀xφ2.

Let φ1 ∨ 〈[α]〉φ2 be a unified notation for those cases. Then, φ2 ≺ φ, since φ2 has less
modalities or quantifiers. Likewise, φ1 ≺ φ because 〈[α]〉φ2 contributes one modality
or quantifier to φ that is not part of φ1. When abbreviating the simpler formulas
¬φ1 by F and φ2 by G, the validity � φ yields � ¬F ∨ 〈[α]〉G, so � F → 〈[α]〉G, from
which the remainder of the proof inductively derives

`L F → 〈[α]〉G. (10)

The proof of (10) is by induction on the syntactic structure of 〈[α]〉.
(a) If 〈[α]〉 is the operator ∀x then � F → ∀xG, where x can be assumed not to

occur in F by renaming. Hence, � F → G. Since G ≺ ∀xG, because it has less
quantifiers, also (F → G) ≺ (F → ∀xG), hence `L F → G is derivable by
IH. Then, `L F → ∀xG derives by ∀-generalization of first-order logic, since x
does not occur in F . It is even decidable if in first-order real arithmetic [Tarski
1951]. The remainder of the proof concludes (F → ψ) ≺ (F → φ) from ψ ≺ φ
without further notice.

(b) If 〈[α]〉 is the operator ∃x then � F → ∃xG. If F and G are L formulas, then,
since L is closed under first-order connectives, so is the valid formula F → ∃xG,
which is, then, provable by IH and even decidable if in first-order real arith-
metic [Tarski 1951].
Otherwise, F,G correspond to L formulas by expressiveness of L (Def. 4.4),
which implies the existence of an L formula G[ such that � G[ ↔ G. Since
L is closed under first-order connectives, the valid formula F → ∃x (G[) is prov-
able by IH, because (F → ∃x (G[)) ≺ (F → ∃xG) sinceG[ ∈ L whileG 6∈ L. Now,
� G[ ↔ G implies � G[ → G, which is derivable by IH, because (G[ → G) ≺ φ
since G[ is in L. From `L G

[ → G, the derivable dual of ∀-generalization derives
`L ∃x (G[) → ∃xG, which combines with `L F → ∃x (G[) by modus ponens to
`L F → ∃xG.15

(c) � F → 〈x′ = θ〉G implies � F → (〈x′ = θ〉G)[, which is derivable by IH, because
(F → (〈x′ = θ〉G)[) ≺ φ since (〈x′ = θ〉G)[ is in L. Since L is differentially ex-

15 Expressiveness could also render F and G as F [, G[ into L in this and other cases of this proof and finally
come back to G using rule M instead of ∃-generalization. But the other cases have direct proofs.
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pressive, `L 〈x′ = θ〉G ↔ (〈x′ = θ〉G)[ is provable, so `L F → 〈x′ = θ〉G derives
from `L F → (〈x′ = θ〉G)[ by modus ponens.

(d) � F → [x′ = θ]G implies � F → ¬〈x′ = θ〉¬G. Thus, � F → ¬(〈x′ = θ〉¬G)[,
which is derivable by IH, because (F → ¬(〈x′ = θ〉¬G)[) ≺ φ since (〈x′ = θ〉¬G)[

is in L. Since L is differentially expressive, `L 〈x′ = θ〉¬G ↔ (〈x′ = θ〉¬G)[

is provable, so `L F → ¬〈x′ = θ〉¬G derives from `L F → ¬(〈x′ = θ〉¬G)[ by
propositional congruence. Axiom [·], thus, derives `L F → [x′ = θ]G.

(e) � F → 〈x′ = θ&ψ〉G, then this formula is, by Lemma 3.4, equivalent to a for-
mula without evolution domain restrictions. Using equation (7) from the proof
of Lemma 3.4 as a definitorial abbreviation concludes this case by IH. Similarly
for � F → [x′ = θ&ψ]G.

(f) The cases where α is of the form x := θ, ?ψ, β ∪ γ, or β; γ are consequences of the
soundness of the equivalence axioms 〈:=〉,〈?〉,〈∪〉,〈;〉 plus the duals obtained via
the duality axiom [·]. Whenever their respective left-hand side is valid, their
right-hand side is valid and of smaller complexity (the games get simpler),
and hence derivable by IH. Thus, F → 〈α〉G derives by applying the respective
axiom. This proof focuses on the 〈〉 cases, because [] cases derive by axiom [·]
from the 〈〉 equivalences.

(g) � F → 〈x := θ〉G implies � F ∧ y = θ → Gyx for a fresh variable y, where Gyx is
the result of substituting y for x. Since (F ∧ y = θ → Gyx) ≺ 〈x := θ〉G, because
there are less hybrid games, `L F ∧ y = θ → Gyx is derivable by IH. Hence,
〈:=〉 derives `L F ∧ y = θ → 〈x := y〉G. Propositional logic derives `L F →
(y = θ → 〈x := y〉G), from which `L F → ∀y (y = θ → 〈x := y〉G) derives by ∀-
generalization of first-order logic as y is not in F . Since y was fresh it does not
appear in θ and G, so substitution validities of first-order logic derive `L F →
〈x := θ〉G. Note that direct proofs of F → 〈x := θ〉G by 〈:=〉 are possible when the
resulting substitution is admissible, but the substitution forming Gyx is always
admissible, because it is a variable renaming replacing x by the fresh y.

(h) � F → 〈?ψ〉G implies � F → ψ ∧G. Since (ψ ∧ G) ≺ 〈?ψ〉G, because it has less
modalities, `L F → ψ∧G is derivable by IH. Hence, 〈?〉 derives `L F → 〈?ψ〉G by
propositional congruence, which is used without further notice subsequently.

(i) � F → 〈β ∪ γ〉G implies � F → 〈β〉G ∨ 〈γ〉G. Since 〈β〉G ∨ 〈γ〉G ≺ 〈β ∪ γ〉G, be-
cause, even if the propositional and modal structure increased, the structural
complexity of both hybrid games β and γ is smaller than that of β ∪ γ (formula
G did not change), `L F → 〈β〉G ∨ 〈γ〉G is derivable by IH. Hence, 〈∪〉 derives
`L F → 〈β ∪ γ〉G.

(j) � F → 〈β; γ〉G, which implies � F → 〈β〉〈γ〉G. Since 〈β〉〈γ〉G ≺ 〈β; γ〉G, because,
even if the number of modalities increased, the overall structural complexity
of the hybrid games decreased because there are less sequential compositions,
`L F → 〈β〉〈γ〉G is derivable by IH. Hence, `L F → 〈β; γ〉G derives by 〈;〉.

(k) � F → [β∗]G can be derived by induction as follows. Formula [β∗]G, which ex-
presses that Demon has a winning strategy in game β∗ to satisfy G, is an in-
ductive invariant of β∗, because [β∗]G→ [β][β∗]G is valid, even provable by the
variation [β∗]G → G ∧ [β][β∗]G of 〈∗〉 that can be obtained from axioms 〈∗〉 and
[·]. Thus, its equivalent L encoding from Def. 4.4 is also an inductive invariant:

ϕ ≡ ([β∗]G)[.

Then F → ϕ and ϕ→ G are valid (Angel controls ∗), so derivable by IH, since
(F → ϕ) ≺ φ and (ϕ → G) ≺ φ hold, because ϕ is in L. By M, 〈d〉 and [·],
the latter derivation `L ϕ→ G extends to `L [β∗]ϕ→ [β∗]G. As above, ϕ→ [β]ϕ
is valid, and thus derivable by IH, since β has less loops than β∗. Thus, ind,
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which derives from FP by Lemma 4.1, derives `L ϕ→ [β∗]ϕ. The above deriva-
tions `L F → ϕ, `L ϕ→ [β∗]ϕ, and `L [β∗]ϕ→ [β∗]G combine by modus ponens
to `L F → [β∗]G.

(l) � F → 〈β∗〉G. Let x the vector of free variables of 〈β∗〉G. Since 〈β∗〉G is the least
pre-fixpoint, for all dGL formulas ψ with free variables in x:

� ∀x (G ∨ 〈β〉ψ → ψ)→ (〈β∗〉G→ ψ)

by a variation of the soundness argument for FP, which is also derivable by
the (semantic) deduction theorem from FP. In particular, this holds for a fresh
predicate symbol p with arguments x:

� ∀x (G ∨ 〈β〉p(x)→ p(x))→ (〈β∗〉G→ p(x))

Using � F → 〈β∗〉G, this implies
� ∀x (G ∨ 〈β〉p(x)→ p(x))→ (F → p(x))

As (∀x (G ∨ 〈β〉p(x) → p(x)) → (F → p(x))) ≺ φ, because, even if the formula
complexity increased, the structural complexity of the hybrid games decreased,
because φ has one more loop, this fact is derivable by IH:

`L ∀x (G ∨ 〈β〉p(x)→ p(x))→ (F → p(x))

By uniformly substituting 〈β∗〉G, which has free variables x, for p(x), US de-
rives using p 6∈ F,G, β:

`L ∀x (G ∨ 〈β〉〈β∗〉G→ 〈β∗〉G)→ (F → 〈β∗〉G) (11)
Yet, 〈∗〉 derives ` G∨〈β〉〈β∗〉G→ 〈β∗〉G, from which ` ∀x (G∨〈β〉〈β∗〉G→ 〈β∗〉G)
derives by ∀-generalization. Now modus ponens derives `L F → 〈β∗〉G by (11).

(m) � F → 〈βd〉G implies � F → ¬〈β〉¬G, which implies � F → [β]G. Since [β]G ≺
〈βd〉G, because βd is more complex than β even if the modality changed,
`L F → [β]G can be derived by IH. Axiom [·], thus, derives `L F → ¬〈β〉¬G,
from which axiom 〈d〉 derives `L F → 〈βd〉G.

(n) � F → [βd]G implies � F → ¬〈βd〉¬G, hence � F → 〈β〉G. Since 〈β〉G ≺ [βd]G,
because βd is more complex than β even if the modality changed, `L F → 〈β〉G
can be derived by IH. Consequently, `L F → ¬¬〈β〉¬¬G can be derived using
M on ` G → ¬¬G. Hence, 〈d〉 derives `L F → ¬〈βd〉¬G, from which axiom [·]
derives `L F → [βd]G.

This concludes the derivation of (10), because all operators 〈[α]〉 for the form (10)
have been considered. From (10), which is `L ¬φ1 → 〈[α]〉φ2 after resolving abbrevi-
ations, `L φ1 ∨ 〈[α]〉φ2 derives propositionally.

This completes the proof of completeness (Theorem 4.5), because all syntactical forms
of dGL formulas have been covered.

The proof of Theorem 4.5 is constructive, so Theorem 4.5 is constructive if L is con-
structively expressive. The proof is Moschovakis coding-free [Moschovakis 1974]. It
even works entirely without coding, except for x′ = θ, ∃ and [β∗]. Using US, the case
for 〈β∗〉G in the proof of Theorem 4.5 reveals an explicit [-free reduction to a dGL for-
mula with less loops, which can be considered a modal analogue of characterizations in
the Calculus of Constructions [Coquand and Huet 1988]. Using Theorem 4.5, these ob-
servations easily reprove a classical result of Meyer and Halpern [Meyer and Halpern
1982] about the semidecidability of termination assertions (logical formulas F → 〈α〉G
of uninterpreted dynamic logic with first-order F,G and regular programs α without
differential equations). In fact, this proves a stronger result about semidecidability of
dynamic logic without any [α]· with loops [Schmitt 1984]. Theorem 4.5 shows that this
result continues to hold for uninterpreted game logic in the fragment where ∗ only oc-
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curs with even d-polarity in 〈α〉 and only of odd d-polarity in [α] (the conditions on tests
in α are accordingly).

The constructive nature of Theorem 4.5 characterizes exactly which part of hybrid
games proving is difficult: finding computationally succinct weaker invariants for [β∗]G
and finding succinct differential (in)variants [Platzer 2010a] for [x′ = θ] and 〈x′ = θ〉, of
which a solution is a special case [Platzer 2012d]. The case ∃xG is interesting in that
a closer inspection of Theorem 4.5 reveals that its complexity depends on whether that
quantifier supports Herbrand disjunctions. That is the case for uninterpreted first-
order logic and first-order real arithmetic [Tarski 1951], but not for G ≡ [β∗]ψ, which
already gives ∃xG the full Π1

1-complete complexity even for classical dynamic logic
[Harel et al. 2000, Theorems 13.1,13.2]. Herbrand disjunctions for ∃xG justify how
Theorem 4.5 implies the result of Schmitt [Schmitt 1984].

The proof of Theorem 4.5 uses minimal coding. The case [β∗] needs encoding, because
F → [β∗]G validity is already Π0

2-complete for classical dynamic logic [Harel et al. 2000,
Theorem 13.5]. The case ∃ needs encoding in the presence of [β∗], because ∃x [β∗]G
validity is Π1

1-complete for classical dynamic logic [Harel et al. 2000, Theorems 13.1].
The case x′ = θ leads to classical ∆1

1-hardness over N [Platzer 2008, Lemma 4].
The completeness proof indicates a coding-free way of proving Angel properties

〈β∗〉G that is similar to characterizations in the Calculus of Constructions and works
in practice (Appendix A). In particular, dGL does not need Harel’s convergence rule
[Harel et al. 1977] for completeness and, thus, neither does logic for hybrid systems,
even though it was previously based on it [Platzer 2012a]. These results correspond
to a hybrid game reading of influential views of understanding program invariants as
fixpoints [Cousot and Cousot 1977; Clarke 1979].

4.4. Expressibility
The dGL calculus is complete relative to any differentially expressive logic L (Theo-
rem 4.5). One natural choice for an oracle logic is LµD, the modal µ-calculus of differ-
ential equations (fixpoint logic of differential equations):

φ ::= X(θ) | p(θ) | θ1 ≥ θ2 | ¬φ | φ ∧ ψ | 〈x′ = θ〉φ | µX.φ

where the least fixpoint µX.φ requires all occurrences of X in φ to be positive. The
semantics is the usual, e.g., µX.φ binds set variable X and real variable (vector) x
and is interpreted as the least fixpoint X of φ, i.e. the smallest denotation of X such
that X(x)↔ φ holds for all x [Kozen 1983; Lubarsky 1989]. A more careful inspection
of the proofs in this article reveals that the two-variable fragment of LµD is enough,
which gives a stronger statement as long as the variable hierarchy for LµD does not
collapse [Berwanger et al. 2007]. The logic LµD is considered in this context, because it
exposes the most natural interactivity on top of differential equations and makes the
constructions most apparent and minimally coding themselves.

LEMMA 4.6 (CONTINUOUS EXPRESSIBILITY). LµD is constructively differentially
expressive for dGL.

PROOF. Of course, (p(θ))[ = p(θ) etc. The inductive cases are shown in Fig. 6. It
is easy to check that φ[ is equivalent to φ, e.g. based on the soundness of the dGL
axioms. Note that (φ ∨ ψ)[ ≡ φ[ ∨ ψ[ is a consequence of the above definitions and
the abbreviation φ ∨ ψ ≡ ¬(¬φ ∧ ¬ψ). The quantifier in the definition of (〈x := θ〉φ)[

is not necessary if the substitution of θ for x is admissible. The variable renaming of
fresh variable y for x in φ with the result φyx is always admissible. Quantifiers are
expressible in LµD using Footnote 14. Also x′ = θ&ψ is expressible by Lemma 3.4. The
case (〈α∗〉φ)[ is defined as the least fixpoint of the reduction of φ∨〈α〉X(x), where x are
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(¬φ)[ ≡ ¬(φ[)

(φ ∧ ψ)[ ≡ φ[ ∧ ψ[

(∃xφ)[ ≡ ∃x (φ[)

(〈x := θ〉φ)[ ≡ ∀y (y = θ → (φyx)[)

(〈x′ = θ〉φ)[ ≡ 〈x′ = θ〉(φ[)
(〈?ψ〉φ)[ ≡ (ψ ∧ φ)[

(〈α ∪ β〉φ)[ ≡ (〈α〉φ ∨ 〈β〉φ)[

(〈α;β〉φ)[ ≡ (〈α〉〈β〉φ)[

(〈α∗〉φ)[ ≡ µX.(φ ∨ 〈α〉X(x))[

(〈αd〉φ)[ ≡ (¬〈α〉¬φ)[

([α]φ)[ ≡ (〈αd〉φ)[

Fig. 6. Inductive cases for constructive expressivity of LµD.

the variables of α using classical short notation [Lubarsky 1989]. In particular, (〈α∗〉φ)[

satisfies φ ∨ 〈α〉(〈α∗〉φ)[ ↔ (〈α∗〉φ)[ and (〈α∗〉φ)[ is the formula with the smallest such
interpretation, which is all that these proofs depend on. Finally, LµD is differentially
expressive, because it includes all formulas of the form 〈x′ = θ〉φ.

A discrete analog of Lemma 4.6 follows from a (constructive) equi-expressibility re-
sult [Platzer 2012a, Theorem 9] using the Euler axiom, which relates properties of
differential equations to properties of their Euler discretizations [Platzer 2012a].

COROLLARY 4.7 (DISCRETE EXPRESSIBILITY). The (first-order) discrete µ-calculus
over R is constructively differentially expressive for dGL (with the Euler axiom).

This aligns the discrete and the continuous side of hybrid games in a construc-
tive provably equivalent way similar to corresponding results about hybrid systems
[Platzer 2012a]. Yet, the interactivity of two-variable fixpoints stays, which turns out
to be necessary (Section 5).

COROLLARY 4.8 (RELATIVE COMPLETENESS). The dGL calculus is a sound and
complete axiomatization of dGL relative to LµD. With the Euler axiom, the dGL cal-
culus is a sound and complete axiomatization of dGL relative to the discrete µ-calculus
over R.

PROOF. Follows from Theorem 4.5, Lemma 4.6, and Corollary 4.7.

An interesting question is whether fragments of dGL are complete relative to smaller
logics, which Theorem 4.5 and Lemma 4.6 reduce solely to a study of expressing (two-
variable) LµD. This yields the following hybrid versions of Parikh’s completeness re-
sults for fragments of game logic [Parikh 1983].

COROLLARY 4.9 (RELATIVE COMPLETENESS OF ∗-FREE dGL). The dGL calculus is
a sound and complete axiomatization of ∗-free hybrid games relative to dL.

PROOF. Lemma 4.6 reduces to dL, even the first-order logic of differential equations
[Platzer 2012a], for ∗-free hybrid games.

COROLLARY 4.10 (RELATIVE COMPLETENESS OF d-FREE dGL). The dGL calculus
is a sound and complete axiomatization of d-free hybrid games relative to dL.
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PROOF. All d-free loops are Scott-continuous by Lemma 3.7, so have closure ordinal
ω and are, thus, equivalent to their dL form, and even expressible in the first-order
logic of differential equations by [Platzer 2012a, Theorem 9].

By Corollary 4.10, dL is relatively complete without the convergence rule that had
been used before [Platzer 2008]. In combination with the first and second relative com-
pleteness theorems of dL [Platzer 2012a], it follows that the dGL calculus is a sound
and complete axiomatization of ∗-free hybrid games and of d-free hybrid games relative
to the first-order logic of differential equations. When adding the Euler axiom [Platzer
2012a], both are sound and complete axiomatizations of those classes of hybrid games
relative to discrete dynamic logic [Platzer 2012a]. Similar completeness results for dGL
relative to dL, and, thus, relative to the first-order logic of differential equations, fol-
low from Theorem 4.5 with some more thought, e.g., for the case of hybrid games with
winning regions that are finite rank Borel sets.

4.5. Separating Axioms
In order to illustrate how and why reasoning about hybrid games differs from reason-
ing about hybrid systems, this section identifies separating axioms, i.e. axioms of dL
[Platzer 2008; Platzer 2012a] that do not hold in dGL. The following result identifies
the axiomatic separation, i.e. all axioms differing in the respective complete axiomati-
zations of hybrid systems and hybrid games. It investigates the difference in terms of
important classes of modal logics; recall [Hughes and Cresswell 1996] or Appendix B.

THEOREM 4.11 (AXIOMATIC SEPARATION). The axiomatic separation of hybrid
games compared to hybrid systems is exactly the Kripke axiom K, the loop induction
axiom I, Harel’s loop convergence axiom C, the Barcan axiom B, the vacuous axiom V,
and the normal Gödel generalization rule G. Hence, dGL is a subregular, sub-Barcan,
monotone modal logic without the loop induction loop convergence axioms and vacuity.

The proof of Theorem 4.11 is in Appendix B, where a simple counterexample for each
separating axiom illustrates what makes hybrid games different than hybrid systems.
The difference in axioms is summarized in Fig. 7, where Cl∀ is the universal closure
with respect to all variables bound in hybrid game α. Besides the axiomatic separation,
Fig. 7 shows additional related axioms or proof rules for illustration purposes.

While explicit counterexamples proving the separation in Theorem 4.11 are in Ap-
pendix B, the sequel explains the intuition for the difference causing unsoundness in
hybrid games of the axioms identified in Theorem 4.11. Kripke’s K is unsound (for hy-
brid games): even if Demon can play RoboCup so that his robots score a goal every time
they pass the ball (just never try) and Demon can also play RoboCup so that his robots
always pass the ball (somewhere), that does not mean Demon would have a strategy
to always score goals. The converse monotonicity axiom

←−
M is unsound: just because

Angel WALL·E has a strategy to be close to EVE or far away does not mean WALL·E
would either have a strategy to always end up close to E or a strategy that is always
far away. The induction axiom I is unsound: just because Demon has a strategy for his
RoboCup robots (e.g. power down) that, no matter how often α∗ repeats, Demon still
has a strategy such that his robots do not run out of battery for just one more control
cycle, that does not mean he has a strategy to keep his robots’ batteries nonempty all
the time. Harel’s convergence rule C is unsound: even if Demon may have a strategy
(e.g. waiting) such that after any number of rounds of the game, he has a strategy to
move his robots closer to the goal for one control cycle, he still may not have a strat-
egy to ultimately reach the goal, because that requires many rounds of guaranteed
progress not just one. The Barcan axiom B is unsound: just because the winner of a
RoboCup tournament can be chosen for x after the robot game α does not mean it
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K [α](φ→ ψ)→ ([α]φ→ [α]ψ) M[·]
φ→ ψ

[α]φ→ [α]ψ
←−
M 〈α〉(φ ∨ ψ)→ 〈α〉φ ∨ 〈α〉ψ M 〈α〉φ ∨ 〈α〉ψ → 〈α〉(φ ∨ ψ)

I [α∗](φ→ [α]φ)→ (φ→ [α∗]φ) ∀I Cl∀ (φ→ [α]φ)→ (φ→ [α∗]φ)

C [α∗]∀v>0 (ϕ(v)→ 〈α〉ϕ(v − 1))
→ ∀v (ϕ(v)→ 〈α∗〉∃v≤0ϕ(v))

(v 6∈ α)

B 〈α〉∃xφ→ ∃x 〈α〉φ (x 6∈ α)
←−
B ∃x 〈α〉φ→ 〈α〉∃xφ (x 6∈ α)

V φ→ [α]φ (FV(φ) ∩ BV(α) = ∅) VK φ→ ([α]>→[α]φ) (FV(φ)∩BV(α)=∅)

G
φ

[α]φ
M[·]

φ→ ψ

[α]φ→ [α]ψ

R
φ1 ∧ φ2 → ψ

[α]φ1 ∧ [α]φ2 → [α]ψ
M[·]

φ1 ∧ φ2 → ψ

[α](φ1 ∧ φ2)→ [α]ψ

FA 〈α∗〉φ→ φ ∨ 〈α∗〉(¬φ ∧ 〈α〉φ)

Fig. 7. Separating axioms: The axioms and rules on the left are sound for hybrid systems but not for hybrid
games. The related axioms and rules on the right are sound for hybrid games.

would be possible to predict this winner x before the game α. By contrast, the converse
Barcan axiom

←−
B is sound for hybrid games since, if known before the game α, selecting

the winner for x can still be postponed until after the game x. The vacuous axiom V,
in which no free variable of φ is bound by α, is unsound: even if φ does not change its
truth-value during α does not mean it would be possible for Demon to reach any final
state at all without being tricked into violating the rules of the game along the way.
With an additional assumption ([α]>) that Demon has a winning strategy to reach any
final state at all (in which >, i.e. true, holds which imposes no condition), the possible
vacuous axiom VK is sound. Gödel’s rule G is unsound: even if φ holds in all states,
Demon may still fail to win [α]φ if he loses prematurely since Angel tricks Demon into
violating the rules during the hybrid game α. Regularity rule R is unsound: just be-
cause Demon’s RoboCup robots have a strategy to focus the robots on strong defense
and another strategy to, instead, focus them on strong offense that does not mean
he would have a strategy to win RoboCup even if simultaneously strong defense and
strong offense together might imply victory, because offensive and defensive strategies
are in conflict. First arrival FA is unsound: just because Angel’s robot has a strategy
to ultimately capture Demon’s faster robot with less battery does not mean she would
either start with capture or would have a strategy to repeat her control cycle so that
she exactly captures Demon’s robot during the next control cycle, as Demon might save
up his energy and speed up just when Angel predicted to catch him. Having a better
battery, Angel will still ultimately win even if Demon sped ahead, but not in the round
she thought to be able to predict.

Unlike Hare’s convergence axiom, Harel’s convergence rule [Harel et al. 1977] is not
a separating axiom, because it is sound for dGL, just unnecessary. In light of Theo-
rem 3.8, it is questionable whether the convergence rule would be relatively complete
for hybrid games, because it is based on the existence of bounds on the repetition
count. The hybrid version of Harel’s convergence rule [Platzer 2008] reads as follows
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(it assumes that v does not occur in α):

ϕ(v + 1) ∧ v + 1 > 0→ 〈α〉ϕ(v)

∃v ϕ(v)→ 〈α∗〉∃v≤0ϕ(v)

If the convergence rule could prove, e.g., dGL formula (8) from Theorem 3.8, then ϕ(·)
would yield a bound on the number of repetitions, which, by the proof of Theorem 3.8
does not exist below closure ordinal ω · 2. The premise of the convergence rule makes
the bound induced by ϕ(v) progress by 1 in each iteration. The postcondition in the
conclusion makes it terminate for v ≤ 0. And the conclusion’s antecedent requires a
real number for the initial bound. Thus, the convergence rule only permits bounds
below ω, not the required transfinite ordinal ω · 2.

These thoughts further suggest a transfinite version of the convergence rule with an
extra inductive premise for limit ordinals. That would be interesting, but is technically
more involved than the simple dGL axiomatization, because it would require multi-
sorted quantifiers and proof rules for ordinal arithmetic.

5. EXPRESSIVENESS
Differential game logic dGL is a logic for hybrid games whose axiomatic separation to
differential dynamic logic dL for hybrid systems [Platzer 2008; Platzer 2012a] has been
characterized in Section 4.5. How does dGL compare in expressiveness to differential
dynamic logic dL, which is the corresponding logic for hybrid systems? Hybrid systems
are expected to be single-player hybrid games where one of the players never gets to
decide. And, dL is expected to be a sublogic of dGL. But what about the converse? How
the expressiveness of dGL relates to that of dL is related to classical long-standing
open questions for the propositional case [Parikh 1985; Berwanger et al. 2007]. Note
that even known classical results about expressiveness for the propositional case do
not transfer to dGL, because they hinge on finite state [Parikh 1985].

The notation L1 ≤ L2 signifies that logic L2 is expressive for logic L1 (Def. 4.4). Like-
wise, L1 ≡ L2 signifies equivalent expressiveness, i.e. L1 ≤ L2 and L2 ≤ L1. Further,
L1 < L2 means that L1 is strictly less expressive than L2, i.e. L1 ≤ L2 but not L2 ≤ L1.

LEMMA 5.1 (SINGLE-PLAYER HYBRID GAMES). dL ≤ dGL by syntactic embedding.

PROOF. Hybrid systems form single-player hybrid games, i.e. d-free hybrid games.
The identity function is a syntactic embedding of dL into dGL, which preserves the
semantics as follows. With Lemma 3.7, Kleene’s fixpoint theorem implies that ω is the
closure ordinal for d-free hybrid games α. Hence, for d-free α, a simple induction shows

ςα∗(X) = ςωα (X) =
⋃
n<ω

ςnα(X) =
⋃
n<ω

ςαn(X) (12)

where αn is the n-fold sequential composition of α given by α0 ≡ ?> and αn+1 ≡ α;αn.
The semantics of d-free dGL agrees with that defined for dL originally [Platzer 2008;
Platzer 2012a] by a simple comparison using (12) for the crucial case α∗.

What about the converse? Is the logic dGL truly new or could it have been expressed
in dL? Unlike dL, dGL is meant for hybrid games and makes it more convenient to
refer directly to questions about hybrid games.16 Does dGL provide features strictly
necessary for hybrid games that dL is missing? Finitely bounded hybrid games are

16 Even if a logic is not strictly more expressive but “only” more convenient, it is still often strongly prefer-
able. Program logics and their cousins, for example, are used widely, even though first-order integer arith-
metic would theoretically suffice [Harel et al. 1977; Harel and Kozen 1984; Harel et al. 2000].
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expressible in dL by Corollary 4.9. What about other hybrid games? Both possible out-
comes are interesting. If dL ≡ dGL, then Theorem 4.5 implies that dGL is complete
relative to dL and relative to the smaller logics that dL is complete for [Platzer 2012a].
If dL < dGL, instead, then dGL is a provably more expressive logic with features that
are strictly necessary for hybrid games. The answer takes some preparations but it
also characterizes the general expressiveness of dL and dGL as a byproduct.

Let (|y0, . . . , yn|) denote a R-Gödel encoding, i.e. a bijective function pairing (n+1)-
tuples of real numbers y0, y1, . . . , yn into a single real, (|y0, . . . , yn|), that, along with
its inverse, is definable in FOD [Platzer 2008, Lemma 4]. FOD is the first-order logic
of differential equations [Platzer 2008], i.e. the first-order fragment of dL and dGL
where all hybrid games α are of the form x′ = θ. By Lemma 5.1, FOD is a sublogic of
dGL and, thus, R-Gödel encodings are definable in dGL. (Rich-test) regular dynamic
logic (DL) [Harel et al. 2000; Platzer 2012a] over R is the fragment of dL (and by
Lemma 5.1 of dGL) without d and without differential equations. Both FOD [Platzer
2008, Lemma 4] and DL [Platzer 2012a, Theorem 9] can define R-Gödel encodings.
Acceptable structures are structures in which elementary R-Gödel encodings are defin-
able [Moschovakis 1974].

The open recursive game quantifier a of length ω applied to formula ϕ(x, y) is

ay ϕ(x, y)
def≡ ∀y0 ∃y1 ∀y2 ∃y3 . . .

∨
n<ω

ϕ(x, (|y0, . . . , yn|)) (13)

The semantics of this infinitary formula with its ω many quantifiers and its infinitary
disjunction of length ω is defined by a Gale-Stewart [1953] game in which two players
alternate in choosing values for the ω many variables y2i (for player ∀) and y2i+1 (for
player ∃). Player ∃wins if ϕ(x, (|y0, . . . , yn|)) holds for some n < ω, i.e. ϕ(x, y) holds when
y has the value (|y0, . . . , yn|) that is a R-Gödel encoding of the tuple (y0, . . . , yn). If player
∃ has a winning strategy, the infinitary disjunction

∨
n<ω ϕ(x, (|y0, . . . , yn|)) is satisfied;

see [Moschovakis 1974; Väänänen 2011] for details.

LEMMA 5.2 (GAME QUANTIFIER). Recursive game quantifier a is definable in dGL.

PROOF. Let ϕ(x, y) a dGL formula, which, to simplify notation, is assumed to check
the sequence that y encodes only at odd indices n. Then ay ϕ(x, y) is definable in dGL:〈

y := (||);
(
z′ = 1d; z′ = −1d; y := (|y, z|); z′ = 1; z′ = −1; y := (|y, z|)

)∗〉
ϕ(x, y) (14)

This dGL formula uses (|y0, y1, y2, . . . , yn|) reordered as (|. . . (|(|(|(||), y0|), y1|), y2|), . . . yn|) by
a recursive permutation starting from the empty tuple encoding (||) for simplicity rea-
sons. Angel and Demon alternate differential equations for z in (14) that get succes-
sively paired into y by the pairing assignment y := (|y, z|), which is definable [Platzer
2008, Lemma 4]. This alternation of differential equations corresponds to the alterna-
tion of quantifiers in a. The number of actual alternations played in (14) can be exactly
any arbitrary n < ω, because the semantics of 〈α∗〉 is a least fixpoint, so well-founded.
In each round, Demon first changes z to an arbitrary value by evolving along z′ = 1d

and then z′ = −1d for a suitable amount of time. Subsequently, Angel changes z to an
arbitrary value, and both values of z are paired into y using the R-Gödel encoding.

Note that (14) equivalently defines (13), even though the (14) is a finite dGL formula
while (13) is an infinite formula in an infinitary logic augmented with the game quan-
tifier [Väänänen 2011], so (14) is infinitely more concise. The closed recursive game
quantifier ¬ay ¬φ(x, y) is definable in dGL by duality as well, noting that open as well
as closed Gale-Stewart games are determined [Gale and Stewart 1953]. Finally observe
that (14) would not define (13) in the (weaker) advance notice semantics (Appendix B),
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which corresponds to swapping the quantifier alternation with
∨
n<ω to the finitary:∨

n<ω

∀y0 ∃y1 ∀y2 ∃y3 . . . ϕ(x, (|y0, . . . , yn|))

With this preparation, dGL can be proved to be strictly more expressive than dL,
which means that hybrid games are fundamentally more expressive than hybrid sys-
tems. In passing, the expressiveness of dGL and dL are characterized in terms of in-
ductive and first-order definability, respectively, over acceptable reals.

THEOREM 5.3 (EXPRESSIVE POWER). dL < dGL.

PROOF. By Lemma 5.1, it only remains to refute dGL ≤ dL. R-Gödel encodings etc.
are elementarily definable in FOD [Platzer 2008, Lemma 4], thus, also in DL over R
[Platzer 2012a, Theorem 9]. This makes R an acceptable structure [Moschovakis 1974]
when augmented with the corresponding definitions from FOD or DL over R. Further,
dL ≡ FOD [Platzer 2008] and dL ≡ DL over R [Platzer 2012a, Theorem 9]. On accept-
able structures, DL defines exactly all first-order definable relations [Harel and Kozen
1984, Theorems 3 and 4]. On acceptable structures, the open recursive game quanti-
fier ay ϕ(x, y) for first-order formulas ϕ(x, y) exactly defines all (positive first-order) in-
ductively definable relations [Moschovakis 1972; Moschovakis 1974, Theorem 5C.2].17

Game quantifier a is definable in dGL by Lemma 5.2, and so are all inductive rela-
tions. In acceptable structures, not all inductively definable relations are first-order
definable [Moschovakis 1974, Theorem 5B.2]. Thus, dGL defines an inductive relation
that DL cannot define over R, so neither can dL. Hence, dL ≡ DL < dGL over R.

Thus, hybrid games can characterize relations that hybrid systems cannot, because
dGL defines all inductive relations over (augmented) R, while dL defines exactly all
first-order definable relations. The proof of Theorem 3.8 implies that ωHG

1 exceeds all
order types of all inductive well-orders, because all inductive relations can be charac-
terized in dGL. All closure ordinals of inductive relations occur as order types of some
inductive well-order, because the staging order of inductive definitions is well-founded
[Moschovakis 1974, Theorems 3A.3, 3C.1]. So ωHG

1 equals the closure ordinal of the
underlying structure.

The game quantifier and its characterization in the proof of Lemma 5.2 along with
the differential equation characterization of Gödel encodings [Platzer 2008, Lemma
4] implies the existence of a smaller syntactic fragment of dGL that is differentially
expressive, so that dGL is complete relative to this fragment of dGL by Theorem 4.5.
By (13), alternating differential equations in a single loop are the dominant feature of
this fragment. The only modification to the proof of Lemma 4.6 is the case of (〈α∗〉φ)[

which then uses (13) with a (definable) formula ϕ(x, (|y0, . . . , yn|)) that simply checks
whether the decision sequence y0, . . . , yn gives a valid play of hybrid game α∗ in which
Angel wins. The fact that a assumes strict alternation of the players is easily overcome
by choosing ϕ to be independent of yi when the player for its quantifier does not get to
choose at step i in α∗. The actions can be chosen, e.g., as discussed in Appendix A.

6. RELATED WORK
Games and logic have been shown to interact fruitfully in many ways [Gale and Stew-
art 1953; Ehrenfeucht 1961; Parikh 1983; Parikh 1985; Aumann 1995; Hintikka and
Sandu 1997; Stirling 2001; Alur et al. 2002; Pauly and Parikh 2003; Apt and Grädel
2011; Väänänen 2011]. The present article focuses on using logic to specify and verify

17 The game quantifier in [Moschovakis 1972] starts with ∃y1, which is a difference easily overcome.
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properties of hybrid games, inspired by Parikh’s propositional game logic for finite-
state discrete games [Parikh 1983; Parikh 1985; Pauly and Parikh 2003].

Parikh’s game logic generalizes (propositional discrete) dynamic logic to discrete
games played on a finite state space, and subsumes ∆PDL and CTL∗ [Pauly and
Parikh 2003]. After more than two decades, its expressiveness has only begun to be
understood. It has been shown that the alternation hierarchy in propositional game
logic is strict and encodes parity games that span the full alternation hierarchy of the
(propositional) modal µ-calculus [Berwanger 2003] and that, being in the two variable
fragment, it is less expressive than the (propositional) modal µ-calculus [Berwanger
et al. 2007]. Another influential propositional modal logic, ATL∗ has been used for
model checking finite-state systems [Alur et al. 2002] and is related to propositional
game logic [Berwanger and Pinchinat 2009]. Applications and relations of game logic,
ATL∗ [Alur et al. 2002], and strategy logics with explicit strategies [Chatterjee et al.
2010; Mogavero et al. 2012] are discussed in the literature [Alur et al. 2002; Pauly
and Parikh 2003; Berwanger and Pinchinat 2009; Chatterjee et al. 2010; Mogavero
et al. 2012; Bulling and Jamroga 2014]. Completeness of the ATL fragment of ATL∗
has been considered [Goranko and van Drimmelen 2006] as well as its expressiveness
and complexity [Laroussinie et al. 2008]. But logical investigations of ATL-type logics
are scarce according to a recent survey [Bulling and Jamroga 2014] with more de-
tailed comparisons and progress on the satisfiability problem for ATL with imperfect
information. These logics for the propositional case of finite-state discrete games are
interesting, but it is not clear how their decision procedures should be generalized to
the highly undecidable domain of hybrid games with differential equations, uncount-
able choices, and higher closure ordinals. The logic dGL shows how such hybrid games
can be proved, enjoys compositionality, completeness, and comes with a rich theory.

Differential games have been studied with many different notions of solutions
[Isaacs 1967; Friedman 1971a; Petrosjan 1993; Bressan 2010]. They are of interest
when actions are solely in continuous time. The present article considers the comple-
mentary model of hybrid games where the underlying system is that of a hybrid system
with interacting discrete and continuous dynamics, but the game actions are chosen
at discrete instants of time, even if their outcomes take effect in continuous time.

Hybrid games provide a complementary perspective on differential games, just like
hybrid systems provide a complementary perspective on continuous dynamical sys-
tems. Differential games formalize various notions of adversarial control on variables
for a single differential equation [Isaacs 1967; Friedman 1971a; Petrosjan 1993], in-
cluding solutions based on a non-anticipatory measurable input to an integral inter-
pretation of the differential equations [Friedman 1971a], joint limits for δ → 0 of lower
and upper limits of δ-anticipatory or δ-delayed strategies [Petrosjan 1993], and Pareto-
optimal, Nash, or Stackelberg equilibria, whose computation requires solving PDEs
that quickly become ill-posed (already for feedback Nash equilibria except in very spe-
cial cases); see Bressan [2010] for an overview. Hybrid games, instead, distinguish
discrete versus continuous parts of the dynamics, which simplifies the concepts, be-
cause easier pieces are involved, and, simultaneously, have been argued to make other
aspects like delays in decisions and the integration of computer-decision into continu-
ous physics more realistic [Tomlin et al. 1998; Tomlin et al. 2000; Bouyer et al. 2010;
Vladimerou et al. 2011; Prandini et al. 2001; Quesel and Platzer 2012]. The situation
is similar to hybrid systems, which provide a complementary perspective on contin-
uous dynamical systems [Nerode and Kohn 1992; Alur et al. 1995; Branicky et al.
1998] that can model more complicated systems as a combination of simpler concepts
[Platzer 2012a] and can model computational effects more realistically.

Some reachability aspects of games for hybrid systems have been studied before.
A game view on hybrid systems verification has been proposed following a Hamilton-
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Jacobi-Bellman PDE formulation [Tomlin et al. 2003; Mitchell et al. 2005], with sub-
sequent extensions by Gao et al. [2007]. Their primary focus is on adversarial choices
in the continuous dynamics not on interactions with the discrete dynamics or on in-
teractive game play. Similar observations apply to the viability theory approach to
differential games, which gives powerful answers when the differential game and its
winning conditions satisfy a number of conditions [Cardaliaguet et al. 2007].

WCTL properties of STORMED hybrid games, which are restricted to evolve linearly
in one “direction” all the time, have been shown to be decidable using bisimulation quo-
tients [Vladimerou et al. 2011]. STORMED hybrid games generalize o-minimal hybrid
games which have been shown to be decidable before [Bouyer et al. 2010]. Timed games
[Chatterjee et al. 2011] as well as initialized rectangular hybrid games are known to
be decidable [Henzinger et al. 1999], which is limited to the case where all evolution
domains and jump constraints are bounded rectangles independent of the previous
state of the system and when the controller can only either disable transitions or de-
cide when to take transitions, not both [Henzinger et al. 1999]. Many applications
do not fall into these decidable classes [Quesel and Platzer 2012], so that a study of
more general hybrid games is called for. The results in this article have implications
for such reachability analyses. They show, for example, that reachability computations
and backwards induction for hybrid games require highly transfinite closure ordinals
≥ ωCK

1 . The completeness proof further exactly characterizes the challenging cases in
hybrid games verification.

This article takes a complementary view and studies logics and proofs for hybrid
games instead of searching for decidable fragments using bisimulation quotients [Hen-
zinger et al. 1999; Bouyer et al. 2010; Vladimerou et al. 2011], which cannot generally
exist. It provides a proof-based and compositional verification technique for more gen-
eral hybrid games with nonlinear dynamics. This article’s notion of hybrid games is
more flexible, because it allows arbitrary nested hybrid game choices rather than one
fixed pattern of interaction such as the game of a discrete controller against a contin-
uous plant considered in related work. This results in dGL’s ability to express more
general logical formulas with the flexibility expected from a logic and programming
language, including arbitrarily nested game operators and nested modalities, which
leads to a rich logical theory.

There is more than one way how logic can help to understand games of hybrid sys-
tems. Concurrent work has shown that games can also be added as separate constructs
on top of unmodified differential dynamic logic [Quesel and Platzer 2012], focusing on
the special case of advance notice semantics (Appendix B). The present article follows
an entirely different principle. Instead of leaving differential dynamic logic untouched
and adding several separate game constructs on top of full hybrid systems reachabil-
ity modalities [Quesel and Platzer 2012], the logic dGL becomes a proper game logic by
adding a single operator d for adversariality into the system dynamics. The logic dGL
results in a much simplified but nevertheless more general logic with a simpler and
more general semantics and simpler and more general proof calculus. The present arti-
cle studies a Hilbert calculus and focuses on fundamental logical properties and theory.
See [Quesel and Platzer 2012] for practical aspects like a very challenging robotic fac-
tory automation case study that translates to dGL. Since dGL is a gentle extension with
the single operator d, it is more elegant and significantly easier to implement. What
is more difficult in dGL in comparison to that fragment [Quesel and Platzer 2012],
however, is the need to carefully identify which axioms are no longer sound for games,
which has been pursued in Section 4.5.

The logic dGL presented here has similarities with stochastic differential dynamic
logic (SdL) [Platzer 2011], because both may be used to verify properties of the hy-
brid system dynamics with partially uncertain behavior. Both approaches do, however,
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address uncertainty in fundamentally different ways. SdL takes a probabilistic per-
spective on uncertainty in the system dynamics. The dGL approach put forth in this
paper, instead, takes an adversarial perspective on uncertainty. Both views on how to
handle uncertain behavior are useful but serve quite different purposes, depending on
the nature of the system analysis question at hand. A probabilistic understanding of
uncertainty can be superior whenever good information is available about the distri-
bution of choices made by the environment and other agents. Whenever that is not
possible, adversarial views may be more appropriate, since they do not lead to the in-
adequate biases that arbitrary probabilistic assumptions would impose. Adversarial
dynamics is also called for in cases of true competition, like in RoboCup.

7. CONCLUSIONS AND FUTURE WORK
This article introduced differential game logic (dGL) for hybrid games that combine
discrete, continuous, and adversarial dynamics. Just like hybrid games unify hybrid
systems with discrete games, dGL unifies logic of hybrid systems with Parikh’s propo-
sitional game logic of finite-state discrete games. Hybrid games are challenging, since
computing their winning regions may require closure ordinals ≥ωCK

1 . The logic dGL for
hybrid games is fundamentally more expressive than the corresponding logic dL for hy-
brid systems, because it defines all inductive relations over the augmented structure of
R rather than exactly the first-order definables. Nevertheless, dGL has a simple modal
semantics and a simple proof calculus, which is proved to be a sound and complete
axiomatization of hybrid games relative to any (differentially) expressive logic.

The completeness proof is constructive with minimal coding, thereby exactly char-
acterizing all difficult parts of hybrid games proving. The proof identifies an efficient
fixpoint-style proof technique, which can be considered a modal analogue of charac-
terizations in the Calculus of Constructions [Coquand and Huet 1988], and relates
to hybrid game versions of influential views of understanding program invariants as
fixpoints [Cousot and Cousot 1977; Clarke 1979]. Relative completeness shows that
dGL has all axioms and proof rules for dealing with hybrid games and only the base
games of differential equations themselves are difficult. The study of (fragments of)
dGL which are complete for smaller logics is interesting future work. By the schematic
completeness result, this reduces solely to questions of expressiveness, which give rise
to interesting questions in descriptive set theory.

It is intriguing to observe the overwhelming impact of the innocent addition of a
duality operator. Yet, it is also reassuring to find that logical robustness makes logical
foundations continue to work despite the formidable extra challenges of hybrid games.
To wit, this article contrasted hybrid games with hybrid systems in terms of their
analytic complexity, axiomatizations, and expressiveness.

The dGL axiomatization is strikingly similar to the calculus for stochastic differen-
tial dynamic logic SdL [Platzer 2011], despite their fundamentally different semantical
presuppositions (adversarial nondeterminism versus stochasticity), which indicates
the existence of a deeper logical connection relating stochastic and adversarial uncer-
tainty despite their different mathematical basis (fixpoints, closure ordinals, accept-
able structures, inductive definability, and game theory versus stochastic processes,
martingales, Markov times, and infinitesimal generators). Because of the axiomatic
similarity, the rich theory of dGL may shed light on the logical theory of stochastic
hybrid systems, which so far remained elusive.

The logic of hybrid games opens up many directions for future work, including the
study of computationally bounded winning strategies, e.g., only strategies that are
constructible with small closure ordinals, or with finite rank Borel winning regions, as
well as a study of constructive dGL to retain the winning strategies as explicit proof
terms. Yet, challenges abound, given the ability of dGL to define closed elementary
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games won by a player for whom no hyperelementary quasiwinning strategies exist,
which follows from Theorem 5.3 by [Moschovakis 1974, Chapter 7].

Draws, coalitions, rewards, and payoffs different from ±1 can be expressed easily
in dGL using extra variables, but it may be useful to include direct syntactical sup-
port. Theorem 5.3 shows that all inductively definable game concepts are expressible
in dGL. Rather than including direct support for each, dGL focuses on the most fun-
damental aspects of hybrid games for reasons of simplicity and elegance. Concurrent
games and their equivalent sequential imperfect information games are interesting
but are challenging even in the discrete case, because imperfect information leads to
Henkin quantifiers. By Theorem 5.3, the challenge is not to add concurrent games but
rather to sustain dGL’s compositional verification principles. The logic dGL presented
here can be augmented with differential games as a new kind of atomic games [Platzer
2015a]. Thanks to its compositional semantics, this results in a modular construction,
but is not pursued in this article, because it requires a separate body of mathematics.
Combining dGL with axioms for differential equations [Platzer 2010a; Platzer 2012a]
already provides a way of handling hybrid games with nonlinear differential equations,
differential-algebraic inequalities and differential equations with input.

A. EXAMPLE dGL PROOFS
The completeness proof suggests the use of iteration axiom 〈∗〉 and US to prove 〈α∗〉
properties. The following examples illustrate how this works in practice. Observe how
logic programming saturation with widening quickly proves the resulting arithmetic.

Example A.1 (Non-game system). The simple non-game dGL formula

x ≥ 0→ 〈(x := x− 1)
∗〉0 ≤ x < 1

is provable, shown in Fig. 8, where 〈α∗〉0≤x<1 is short for 〈(x := x− 1)
∗〉(0 ≤ x < 1).

The MP use in Fig. 8 is Hilbert-style, i.e. combines the two lines above by modus ponus.

∗
R ∀x (0 ≤ x < 1 ∨ p(x− 1)→ p(x))→ (x ≥ 0→ p(x))
〈:=〉 ∀x (0 ≤ x < 1 ∨ 〈x := x− 1〉p(x)→ p(x))→ (x ≥ 0→ p(x))
US ∀x (0 ≤ x < 1 ∨ 〈x := x− 1〉〈α∗〉0≤x<1→ 〈α∗〉0≤x<1)→ (x ≥ 0→ 〈α∗〉0≤x<1)
〈∗〉,∀ ∀x (0 ≤ x < 1 ∨ 〈x := x− 1〉〈α∗〉0≤x<1→ 〈α∗〉0≤x<1)
MP x ≥ 0→ 〈α∗〉0≤x<1

Fig. 8. dGL Angel proof for Example A.1 using technique from completeness proof

Example A.2 (Choice game). The dGL formula

x = 1 ∧ a = 1→ 〈(x := a; a := 0 ∩ x := 0)
∗〉x 6= 1

is provable as shown in Fig. 9, where β ∩ γ is short for x := a; a := 0 ∩ x := 0 and
〈(β ∩ γ)

∗〉x 6= 1 short for 〈(x := a; a := 0 ∩ x := 0)
∗〉x 6= 1:

Example A.3 (Hybrid game). The dGL formula

〈(x := 1;x′ = 1d ∪ x := x− 1)
∗〉0 ≤ x < 1

is provable as shown in Fig. 10, where the notation 〈(β ∪ γ)
∗〉0≤x<1 is short for

〈(x := 1;x′ = 1d ∪ x := x− 1)
∗〉(0 ≤ x < 1): Here and in Fig. 9, the ∀,〈∗〉,MP steps con-

clude as in Fig. 8. The proof step 〈′〉 uses that t 7→ x+ t is the solution of the differential
equation, so the subsequent use of 〈:=〉 substitutes 1 in for x to obtain t 7→ 1 + t. Recall
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∗
R ∀x (x 6= 1 ∨ p(a, 0) ∧ p(0, a)→ p(x, a))→ (> → p(x, a))

〈;〉,〈:=〉 ∀x (x 6= 1 ∨ 〈β〉p(x, a) ∧ 〈γ〉p(x, a)→ p(x, a))→ (> → p(x, a))
〈d〉,〈∪〉 ∀x (x 6= 1 ∨ 〈β ∩ γ〉p(x, a)→ p(x, a))→ (> → p(x, a))

US ∀x (x 6= 1 ∨ 〈β ∩ γ〉〈(β ∩ γ)
∗〉x 6= 1→ 〈(β ∩ γ)

∗〉x 6= 1)→ (> → 〈(β ∩ γ)
∗〉x 6= 1)

〈∗〉,∀,MP > → 〈(β ∩ γ)
∗〉x 6= 1

R x = 1 ∧ a = 1→ 〈(β ∩ γ)
∗〉x 6= 1

Fig. 9. dGL Angel proof for Example A.2 using technique from completeness proof

∗
R ∀x (0 ≤ x < 1 ∨ ∀t≥0 p(1 + t) ∨ p(x− 1)→ p(x))→ (> → p(x))
〈:=〉 ∀x (0 ≤ x < 1 ∨ 〈x := 1〉¬∃t≥0 〈x := x+ t〉¬p(x) ∨ p(x− 1)→ p(x))→ (> → p(x))
〈′〉 ∀x (0 ≤ x < 1 ∨ 〈x := 1〉¬〈x′ = 1〉¬p(x) ∨ p(x− 1)→ p(x))→ (> → p(x))
〈;〉,〈d〉 ∀x (0 ≤ x < 1 ∨ 〈β〉p(x) ∨ 〈γ〉p(x)→ p(x))→ (> → p(x))
〈∪〉 ∀x (0 ≤ x < 1 ∨ 〈β ∪ γ〉p(x)→ p(x))→ (> → p(x))
US ∀x (0≤x<1∨〈β ∪ γ〉〈(β ∪ γ)

∗〉0≤x<1→〈(β ∪ γ)
∗〉0≤x<1)→(>→〈(β ∪ γ)

∗〉0≤x<1)
〈∗〉,∀,MP > → 〈(β ∪ γ)

∗〉0≤x<1

Fig. 10. dGL Angel proof for Example A.3 using technique from completeness proof

that the winning regions for the formula needs >ω iterations to converge (Electronic
Appendix B.2). It is still provable easily. A variation of this proof shows dGL formula
(3) from p. 12, where the handling of the nonlinear differential equation is a bit more
complicated.

A variation of Example A.3 also proves dGL formula (8) from the proof of Theorem 3.8,
whose closure ordinal is ω · 2.

B. PROOF OF SEPARATING AXIOMS
This section proves Theorem 4.11 with an emphasis on simple counterexamples for
each separating axiom to identify the logical essence of the informal explanations
shown in Section 4.5.

Subnormal Modal Logic. Unlike dL, dGL is not a normal modal logic [Hughes
and Cresswell 1996]. Axiom K, the modal modus ponens from normal modal logic
[Hughes and Cresswell 1996], dynamic logic [Pratt 1976], and differential dynamic
logic [Platzer 2012a], i.e.

K [α](φ→ ψ)→ ([α]φ→ [α]ψ)

is not sound for dGL as witnessed using the choice α ≡ (x := 1 ∩ x := 0); y := 0 and
φ ≡ x = 1, ψ ≡ y = 1; see Fig. 11. The global version of K, i.e. the implicative version
of Gödel’s generalization rule is still sound and derives with 〈d〉 and [·] from M using
α ≡ βd

M[·]
φ→ ψ

[β]φ→ [β]ψ
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Fig. 11. Game trees for counterexample to axiom K using α ≡ (x := 1 ∩ x := 0); y := 0.

The normal Gödel generalization rule G, i.e.

G
φ

[α]φ

however, is not sound for dGL as witnessed by the choice α ≡ (?⊥)d, φ ≡ >.
The vacuous axiom V, which expresses that formulas do not change their truth-value

along a program if their free variables are not bound, is sound for dynamic logics and
differential dynamic logic dL when no free variable of φ is bound by α [Platzer 2012a]:

V φ→ [α]φ (FV(φ) ∩ BV(α) = ∅)

but the vacuous axiom is not sound for dGL as witnessed by the choice φ ≡ x = 0 and
α ≡ y := 0; (?y = 1)d. With an additional assumption [α]> expressing that the game
can be played to a final state at all, the possible vacuous axiom VK is sound for dGL:

(VK) φ→ ([α]> → [α]φ) (FV(φ) ∩ BV(α) = ∅)

If Demon can always finish the game ([α]>) then φ will continue to hold if it was true
initially since α only changes bound variables and φ only depends on its free variables.

The closest counterpart to G that is sound for hybrid games is M[·] and the closest
counterpart to V that is sound is VK. Both require the extra assumption [α]>, which
is only trivial for hybrid systems not for hybrid games.

Subregular Modal Logic. Regular modal logics are monotone modal logics [Chellas
1980] that are weaker than normal modal logics. But the regular modal generalization
rule [Chellas 1980], i.e.

R
φ1 ∧ φ2 → ψ

[α]φ1 ∧ [α]φ2 → [α]ψ

is not sound for dGL either as witnessed by the choice α ≡ (x := 1 ∩ x := 0); y := 0,
φ1 ≡ x = 1, φ2 ≡ x = y, ψ ≡ x = 1 ∧ x = y; see Fig. 12.
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00
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[α]x = 1

xy

00
�

10
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[α]x = y

xy

00
�

10
�

[α]x = 1 ∧ x = y

Fig. 12. Game trees for counterexample to regular modal rule using α ≡ (x := 1 ∩ x := 0); y := 0.

ACM Transactions on Computational Logic, Vol. 17, No. 1, Article 1, Publication date: November 2015.



Differential Game Logic 1:45

Monotone Modal Logic. The axiom that is closest to K but still sound for dGL is a
monotonicity axiom. This axiom is sound for dGL, yet already included in the mono-
tonicity rule M:

LEMMA B.1 ([CHELLAS 1980, THEOREM 8.13]). In the presence of rule RE from
p. 25, rule M is interderivable with axiom M:

(M) 〈α〉φ ∨ 〈α〉ψ → 〈α〉(φ ∨ ψ)

PROOF. Axiom M derives from rule M: From φ→ φ∨ψ, M derives 〈α〉φ→ 〈α〉(φ∨ψ).
From ψ → φ ∨ ψ, M derives 〈α〉ψ → 〈α〉(φ ∨ ψ), from which propositional logic yields
〈α〉φ ∨ 〈α〉ψ → 〈α〉(φ ∨ ψ).

Conversely, rule M derives from axiom M and rule RE: From φ → ψ propositional
logic derives φ ∨ ψ ↔ ψ, from which RE derives 〈α〉(φ ∨ ψ) ↔ 〈α〉ψ. From axiom M,
propositional logic, thus, derives 〈α〉φ→ 〈α〉ψ.

The converse of axiom M is sound for dL but not for dGL, however, as witnessed by
α ≡ x := 1 ∩ x := 0, φ ≡ x = 1, ψ ≡ x = 0; see Fig. 13:

←−
M 〈α〉(φ ∨ ψ)→ 〈α〉φ ∨ 〈α〉ψ

x

0
�

1
�

〈α〉(x = 1 ∨ x = 0)

x

0
�

1
�
〈α〉x = 1

x

0
�

1
�
〈α〉x = 0

Fig. 13. Game trees for counterexample to converse monotone axiom using α ≡ x := 1 ∩ x := 0.

The presence of the regular congruence rule RE and the fact that [α]φ↔ ¬〈α〉¬φ by
determinacy (Theorem 3.1) still make dGL a classical modal logic [Chellas 1980]. Rule
M even makes dGL a monotone modal logic [Chellas 1980].

Sub-Barcan. The most important axioms about the interaction of quantifiers and
modalities in first-order modal logic are the Barcan and converse Barcan axioms [Bar-
can 1946], which, together, characterize constant domain in normal first-order modal
logics [Hughes and Cresswell 1996]. The Barcan axiom B, which characterizes anti-
monotone domains in first-order modal logic [Hughes and Cresswell 1996], is sound for
constant-domain first-order dynamic logic and for differential dynamic logic dL when
x does not occur in α [Platzer 2012a]:

B 〈α〉∃xφ→ ∃x 〈α〉φ (x 6∈ α)

but the Barcan axiom is not sound for dGL as witnessed by the choice α ≡ y := y + 1×

or α ≡ y′ = 1d and φ ≡ (x ≥ y). The equivalent Barcan formula

B ∀x [α]φ→ [α]∀xφ (x 6∈ α)

is not sound for dGL as witnessed by the choice α ≡ y := y + 1× or α ≡ y′ = 1d and
φ ≡ y ≥ x. The converse Barcan formula of first-order modal logic, which characterizes
monotone domains [Hughes and Cresswell 1996], is sound for dGL and can be derived
when x does not occur in α (see Footnote 13 on p. 24):

(
←−
B) ∃x 〈α〉φ→ 〈α〉∃xφ (x 6∈ α)
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No Induction Axiom. The induction axiom

I [α∗](φ→ [α]φ)→ (φ→ [α∗]φ) (15)

holds for dL, but, unlike the induction rule ind, does not hold for dGL as witnessed by
α ≡ ((x := a; a := 0) ∩ x := 0) and φ ≡ (x = 1); see Fig. 14. The failure of the induction
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Fig. 14. Game trees for counterexample to induction axiom (notation: x, a) with game
α ≡ (x := a; a := 0) ∩ x := 0. (left) [α∗](x = 1→ [α]x = 1) is true by the strategy “if Angel chose stop,
choose x := a; a := 0, otherwise always choose x := 0” (right) [α∗]x = 1 is false by the strategy “repeat once
and repeat once more if x = 1, then stop.” If a winning state can be reached by a winning strategy, the mark
is enclosed in a circle � or �, respectively.

axiom in the counterexample for (15) hinges on the fact that Angel is free to decide
whether to repeat α after each round depending on the state. This would be different
for an advance notice semantics for α∗; see Appendix B. By a variation of the soundness
argument for FP or the semantic deduction theorem applied to the ind rule, it can be
shown, however, that a variation of the induction axiom is still sound if the induction
rule ind is translated into an axiom using the universal closure, denoted Cl∀ , with
respect to all variables bound in α:

(∀I) Cl∀ (φ→ [α]φ)→ (φ→ [α∗]φ)

Universal closures do not rescue the first arrival axiom, a dual of induction axiom I:

FA 〈α∗〉φ→ φ ∨ 〈α∗〉(¬φ ∧ 〈α〉φ)

This axiom holds for dL. It expresses that, if φ holds after a repetition of α, then it
either holds right away or α can be repeated so that φ does not hold yet but can hold
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after one more repetition [Pauly and Parikh 2003]. This axiom does not hold, however,
for dGL as witnessed by α ≡ ((x := x − y ∩ x := 0); y := x) and φ ≡ (x = 0), since two
iterations surely yield x = 0, but one iteration may or may not yield x = 0, depending
on Demon’s choice; see Fig. 15. Observe how the failure of the first arrival axiom in
dGL relates to the impossibility of predicting precise enough repetition counts in hybrid
games (recall corresponding discussions for Theorem 3.8, Section 4.3, and Appendix B).

53

53

00

00

00

�
00

�

repeat

00
�

st
op

22

22

00
�

00
�

repeat

22

�

st
op

repeat

53

�

st
op

53

53

00
�

22

22

00

00
�

00

00
�

repeat

22

00
�

00
�

st
op

repeat

53

00

�

22
�

sto
p

Fig. 15. Game trees for counterexample to first arrival axiom with game α ≡ (x := x− y ∩ x := 0); y := x
(notation: x, y). (left) 〈α∗〉x = 0 is true no matter what Demon chooses (right) 〈α∗〉(x 6= 0 ∧ 〈α〉x = 0) is
false, because stop can be defeated by x := x− y and repeat can be defeated by x := 0.

The hybrid systems axiom version [Platzer 2012a] of Harel’s convergence rule [Harel
et al. 1977], in which v does not occur in α (written v 6∈ α),

C [α∗]∀v>0 (ϕ(v)→ 〈α〉ϕ(v − 1))→ ∀v (ϕ(v)→ 〈α∗〉∃v≤0ϕ(v)) (v 6∈ α)

holds for dL, but not for dGL as witnessed by α ≡ (x := x− y; y := 0 ∩ x := x− 1) and
ϕ(v) ≡ (x ≤ v). In a state where y = 1, x ≥ 2, [α∗]∀v>0 (ϕ(v)→ 〈α〉ϕ(v − 1)) is true by
the strategy “always choose x := x− 1” for Demon for [α∗] and arbitrary strategies for
Angel for the nested 〈α〉. Yet, 〈α∗〉∃v≤0ϕ(v) is false by the strategy “always choose
x := x− y; y := 0”, because x will no longer change after the first iteration then. The
hybrid version of Harel’s convergence rule is sound but unnecessary (Section 4.5).

This completes the proof of Theorem 4.11 by inspecting the complete axiomatization
of dGL from Theorem 4.5 compared to the complete axiomatization of hybrid systems
[Platzer 2012a]. Each axiom of hybrid systems has been considered and either contin-
ues to hold for hybrid games (Theorem 4.3) or has been refuted with a counterexample
(K, I, C, B, V, G) or continues to hold but is unnecessary for completeness (Harels’
convergence rule). A few additional axioms and rules that are not part of the hybrid
systems axiomatization have been considered for illustration purposes, because they
are closely related and highlight interesting aspects of the axiomatic similarity (axiom
M, ∀I,

←−
B, VK, M[·]) or difference (

←−
M, R, FA) between hybrid systems and hybrid games.
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ELECTRONIC APPENDIX
The electronic appendix for this article can be accessed in the ACM Digital Library.
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ANDRÉ PLATZER, Carnegie Mellon University

For reference and to support the interactive intuition of game play, an operational se-
mantics of hybrid games is shown in Appendix A. Alternative semantics for repetitions
of hybrid games are contrasted in Appendix B. Finally, Appendix C provides concrete
hybrid games to support the computational intuition for the higher closure ordinals
proved generically in Section 3.3.

A. OPERATIONAL GAME SEMANTICS
In order to relate the intuition of interactive game play to the denotational semantics
of hybrid games, this section shows an operational semantics for hybrid games that
is more complicated than the modal semantics from Section 2.2 but makes strategies
explicit and directly reflects the intuition how hybrid games are played interactively.
The modal semantics is beneficial, because it is simpler. The results in this section are
not needed in the rest of the paper and play an informative role. The operational se-
mantics formalizes the intuition behind the game tree in Fig. 2 and relates to standard
notions in game theory and descriptive set theory. Theorem A.2 below proves that the
operational game semantics is equivalent to the modal semantics from Section 2.2. The
(denotational) modal semantics is much simpler but the operational semantics makes
winning strategies explicit. As the set of actions A for a hybrid game choose:

{l, r, s, g, d} ∪ {(x := θ) : x variable, θ term} ∪ {?ψ : ψ formula}
∪ {(x′ = θ&ψ@r) : x variable, θ term, ψ formula, r ∈ R≥0}

For game α∪β, action l decides to descend left into α, r is the action of descending right
into β. In game α∗, action s decides to stop repeating, action g decides to go back and
repeat. Action d starts and ends a dual game for αd. The other actions represent the
actions for atomic games: assignment actions, continuous evolution actions (in which
time r is the critical decision), and test actions.

The operational game semantics uses standard notions from descriptive set theory
[Kechris 1994]. The set of finite sequences of actions is denoted by A(N), the set of
countably infinite sequences by AN. The empty sequence of actions is (). The concate-
nation, sˆt, of sequences s, t ∈ A(N) is defined as (s1, . . . , sn, t1, . . . , tm) if s = (s1, . . . , sn)
and t = (t1, . . . , tm). For an a ∈ A, write aˆt for (a)ˆt and write tˆa for tˆ(a). For a set
S ⊆ A(N), write Sˆt for {sˆt : s ∈ S} and tˆS for {tˆs : s ∈ S}. The state btcs reached by
playing a sequence of actions t ∈ A(N) from a state s in interpretation I is inductively
defined by applying the actions sequentially, i.e. as follows:

(1) bx := θcs = s
[[θ]]s
x

(2) bx′ = θ&ψ@rcs = ϕ(r) for the unique ϕ : [0, r]→ S differentiable, ϕ(0) = s,
dϕ(t)(x)

dt (ζ) = [[θ]]ϕ(ζ) and ϕ(ζ) ∈ [[ψ]]
I for all ζ ≤ r. Note that bx′ = θ&ψ@rcs is not

defined if no such ϕ of duration r exists.

(3) b?ψcs =

{
s if s ∈ [[ψ]]

I

not defined otherwise

c© 2015 Copyright held by the owner/author(s). 1529-3785/2015/11-ART1 $15.00
DOI: http://dx.doi.org/10.1145/2817824
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(4) blcs = brcs = bscs = bgcs = bdcs = b()cs = s
(5) baˆtcs = btc(bacs) for a ∈ A and t ∈ A(N)

A tree is a set T ⊆ A(N) that is closed under prefixes, that is, whenever t ∈ T and s is a
prefix of t (i.e. t = sˆr for some r ∈ A(N)), then s ∈ T . A node t ∈ T is a successor of node
s ∈ T iff t = sˆa for some a ∈ A. Denote by leaf(T ) the set of all leaves of T , i.e. nodes
t ∈ T that have no successor in T .

Definition A.1 (Operational game semantics). The operational game semantics of
hybrid game α is, for each state s of each interpretation I, a tree g(α)(s) ⊆ A(N) defined
as follows (see Fig. 16 for a schematic illustration):

(1) g(x := θ)(s) = {(x := θ)}
(2) g(x′ = θ&ψ)(s) = {(x′ = θ&ψ@r) : r ∈ R, r ≥ 0, ϕ(0) = s for some (differentiable)

ϕ : [0, r]→ S such that dϕ(t)(x)
dt (ζ) = [[θ]]ϕ(ζ) and ϕ(ζ) ∈ [[ψ]]

I for all ζ ≤ r}
(3) g(?ψ)(s) = {(?ψ)}
(4) g(α ∪ β)(s) = lˆg(α)(s) ∪ rˆg(β)(s)

(5) g(α;β)(s) = g(α)(s) ∪
⋃

t∈leaf(g(α)(s))

g(β)(btcs)

(6) g(α∗)(s) =
⋃
n<ω

fn({(s), (g)})

where fn is the n-fold composition of the function
f(Z)

def
= Z ∪

⋃
tˆg∈leaf(Z) tˆgˆg(α)(btˆgcs)ˆ{(s), (g)}

(7) g(αd)(s) = dˆg(α)(s)ˆd

Note the implicit closure under prefixes in the definition of g(α)(s) for readability. For
example, g(αd)(s) = dˆg(α)(s)ˆd means g(αd)(s) = {(), (d)} ∪ dˆg(α)(s) ∪ dˆg(α)(s)ˆd.

Angel gets to choose which action to take at node t ∈ g(α)(s) if t has an even number
of occurrences of d, otherwise Demon gets to choose. In the former case Angel acts at t,
in the latter Demon acts at t. Thus, at every t, exactly one of the players acts at t. If the
player who acts at t is deadlocked, then that player loses immediately. A player who
acts at t ∈ g(α)(s) is deadlocked at t if t 6∈ leaf(g(α)(s)) and no successor s is enabled,
i.e. bscs is not defined. This can happen if the last action in s has a condition that is
not satisfied like ?x ≥ 0 or x′ = θ&x ≥ 0 at a state where x < 0. Note that the player
who acts at t ∈ g(α∗)(s) cannot choose g infinitely often for that loop because n < ω.

The players use Markov strategies, i.e. their choices only depend on the current state
of the system and they have no additional information about the strategy of the other
player. A strategy for Angel from initial state s is a nonempty subtree σ ⊆ g(α)(s) that
accepts all of Demon’s actions at nodes t where Demon acts and selects a unique Angel
action when Angel acts at t:

(1) for all t ∈ σ at which Demon acts, tˆa ∈ σ for all a ∈ A such that tˆa ∈ g(α)(s).
(2) for all t ∈ σ at which Angel acts, if t 6∈ leaf(g(α)(s)), then there is a unique a ∈ A

with tˆa ∈ σ.

Strategies for Demon are defined accordingly, with “Angel” and “Demon” swapped. The
action sequence σ⊕τ played from state s in interpretation I when Angel plays strategy
σ and Demon plays strategy τ from s is defined as the sequence (a1, . . . , an) ∈ A(N) of
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Fig. 16. Operational game semantics for hybrid games of dGL

maximal length such that

an+1 :=


a if Angel acts at (a1, . . . , an) and (a1, . . . , an)ˆa ∈ σ
a if Demon acts at (a1, . . . , an) and (a1, . . . , an)ˆa ∈ τ
not defined otherwise

By definition of strategies, σ ⊕ τ is unique. A winning strategy for Angel for winning
condition X ⊆ S from state s in interpretation I is a strategy σ ⊆ g(α)(s) for Angel
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from s such that, for all strategies τ ⊆ g(α)(s) for Demon from s: Demon deadlocks or
bσ ⊕ τcs ∈ X. A winning strategy for Demon for (Demon’s) winning condition X ⊆ S
from state s in interpretation I is a strategy τ ⊆ g(α)(s) for Demon from s such that,
for all strategies σ ⊆ g(α)(s) for Angel from s: Angel deadlocks or bσ ⊕ τcs ∈ X.

The denotational modal semantics (Section 2.2) is equivalent to the operational se-
mantics:

THEOREM A.2 (EQUIVALENT SEMANTICS). The modal semantics of dGL is equiva-
lent to the operational game-tree semantics of dGL, i.e. for each hybrid game α, each
initial state s in each interpretation I, and each winning condition X ⊆ S:

s ∈ ςα(X)⇐⇒ there is a winning strategy σ ⊆ g(α)(s) for Angel to achieve X from s

s ∈ δα(X{)⇐⇒ there is a winning strategy τ ⊆ g(α)(s) for Demon to achieve X{ from s

PROOF. Proceed by simultaneous induction on the structure of α and prove equiv-
alence. As part of the equivalence proof, construct a winning strategy σ achieving X
using that s ∈ ςα(X). The simultaneous induction steps for δα(X{) are simple duali-
ties. It is easy to see that Angel and Demon cannot both have a winning strategy from
the same state s for complementary winning conditions X and X{ in the same game
g(α)(s). Theorem 3.1 implies δα(X{) = ςα(X){.

(1) s ∈ ςx:=θ(X) ⇐⇒ s
[[θ]]s
x ∈ X ⇐⇒ bσ ⊕ τcs = bx := θcs = s

[[θ]]s
x ∈ X, using

σ
def
= {(x := θ)} = g(x := θ)(s). The converse direction follows, because the strategy

σ follows the only permitted strategy.
(2) s ∈ ςx′=θ&ψ(X) ⇐⇒ s = ϕ(0), ϕ(r) ∈ X for some r ∈ R and some (differen-

tiable) ϕ : [0, r]→ S such that dϕ(t)(x)
dt (ζ) = [[θ]]ϕ(ζ) and ϕ(ζ) ∈ [[ψ]]

I for all ζ ≤ r

⇐⇒ bσ ⊕ τcs = bx′ = θ&ψ@rcs = ϕ(r) ∈ X, using σ
def
= {(x′ = θ&ψ@r)} ⊆

g(x′ = θ&ψ)(s). The converse direction follows, since this σ has the only permit-
ted form for a strategy and different values of r that lead to X are equally useful.

(3) s ∈ ς?ψ(X) = [[ψ]]
I ∩ X ⇐⇒ bσ ⊕ τcs = b?ψcs = s ∈ X, with s ∈ [[ψ]]

I using
σ

def
= {(?ψ)} = g(?ψ)(s). The converse direction uses that this σ is the only permitted

strategy and it deadlocks exactly if s 6∈ [[ψ]]
I .

(4) s ∈ ςα∪β(X) = ςα(X)∪ ςβ(X) ⇐⇒ s ∈ ςα(X) or s ∈ ςβ(X). By induction hypothesis,
this is equivalent to: there is a winning strategy σα ⊆ g(α)(s) for Angel for X
from s or there is a winning strategy σβ ⊆ g(β)(s) for Angel for X from s. This is
equivalent to σ ⊆ g(α∪β)(s) being a winning strategy for Angel for X from s, using
σ

def
= lˆσα or σ def

= rˆσβ , respectively.
(5) s ∈ ςα;β(X) = ςα(ςβ(X)). By induction hypothesis, this is equivalent to the exis-

tence of a strategy σα ⊆ g(α)(s) for Angel such that for all strategies τ ⊆ g(α)(s)
for Demon: bσα ⊕ τcs ∈ ςβ(X). By induction hypothesis, bσα ⊕ τcs ∈ ςβ(X) is equiv-
alent to the existence of a winning strategy στ for Angel (which depends on the
state bσα ⊕ τcs that the previous α game led to) with winning condition X from
bσα ⊕ τcs. This is equivalent to σ ⊆ g(α;β)(s) being a winning strategy for Angel
for X from s, using

σ
def
= σα ∪

⋃
(σα ⊕ τ)ˆστ (16)

The union is over all leaves σα ⊕ τ ∈ leaf(g(α)(s)) for which the game is not won
by a player yet. Note that σ is a winning strategy for X, because, for all plays for
which the game is decided during α, the strategy σα already wins the game. For
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the others, στ wins the game from the respective state bσα ⊕ τcs that (when α ter-
minates) was reached by the actions σα ⊕ τ according to the strategy τ that Demon
was observed to have played during α. The converse direction uses that strategies
do not depend on moves that have not been played yet and that all strategies can
be factorized by prefixes of what has actually been played to be coerced into the
form (16).

(6) Both inclusions of the case α∗ are proved separately. If W denotes the set of states
from which Angel has a winning strategy in g(α∗)(s) to achieve X, then need to
show that ςα∗(X) = W . For ςα∗(X) ⊆W , it is enough to show that W is a pre-
fixpoint, i.e. X ∪ ςα(W ) ⊆ W , because ςα∗(X) is the least (pre-)fixpoint. Consider a
s ∈ X ∪ ςα(W ). If s ∈ X then s ∈ W with the winning strategy σ def

= {(s)} for Angel
to achieve X in α∗ from s. Otherwise, s ∈ ςα(W ) implies, by induction hypothesis,
that there is a winning strategy σα ⊆ g(α)(s) for Angel in α to achieve W from s.
By definition of W , Angel has a winning strategy in g(α∗)(s) to achieve X from all
states reached after playing α from s according to σα, i.e. bσα ⊕ τcs ∈ W for all
strategies τ of Demon. As in the case for α;β, composing σα with the respective
(state-dependent) winning strategies στ for all possible resulting states (which are
all in W ) corresponding to the respective possible strategies τ that Demon could
play during the first α, thus leads to a winning strategy of the form

σ
def
= gˆσα ∪

⋃
gˆ(σα ⊕ τ)ˆστ

for Angel to achieve X in α∗ from s, where the union is over all leaves
σα ⊕ τ ∈ leaf(g(α)(s)) in all strategies τ of Demon for which the game is not won by
a player yet during the first α.
The converse inclusion ςα∗(X) ⊇W is equivalent to ςα∗(X){ ⊆W {. For this, recall
ςα∗(X){ = δα∗(X

{) =
⋃
{Z ⊆ S : Z ⊆ X{ ∩ δα(Z)} by Theorem 3.1. Thus, since

ςα∗(X){ is a greatest (post-)fixpoint, it is enough to show Z ⊆ W { for all Z with
Z ⊆ X{ ∩ δα(Z). Since, Z ⊆ δα(Z), Demon has a winning strategy in α to achieve
Z from all s ∈ Z, by induction hypothesis. By composing the respective winning
strategies for Demon, obtain a winning strategy τ for Demon to achieve Z in α∗ for
any arbitrary number of repetitions that Angel chooses (recall that Angel cannot
choose to repeat α∗ infinitely often to win). Since Z ⊆ X{, Angel cannot have a
winning strategy to achieve X in α∗ from any s ∈ Z by Theorem 3.1. Thus, Z ⊆W {.

(7) s ∈ ςαd(X) = ςα(X{){. ⇐⇒ s 6∈ ςα(X{). By induction hypothesis, this is equivalent
to: there is no winning strategy σ ⊆ g(α)(s) for Angel winning X{ in α from s.
Since ςαd(X) = δα(X) by Theorem 3.1, this is equivalent to: there is a winning
strategy τ ⊆ g(α)(s) for Demon winning X in α from s. Since the nodes where
Angel acts swap with the nodes where Demon acts when moving from α to αd, this
is equivalent to: there is a winning strategy σ ⊆ g(αd)(s) for Angel winning X in αd

from s using σ def
= dˆτ ˆd. The converse direction uses that all strategies permitted

for αd begin and end with d.

B. ALTERNATIVE SEMANTICS
To elaborate why the dGL semantics is both natural and general, this section briefly
considers alternative choices for the semantics, focusing on the role of repetition in the
context of hybrid games. It turns out that alternative semantics require prior bounds
of repetitions of <ω (Appendix B.1) and ω (Appendix B.2), respectively.
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B.1. Advance Notice Semantics
One alternative semantics is the advance notice semantics for α∗, which requires the
players to announce the number of times that game α will be repeated when the loop
begins. The advance notice semantics defines ςα∗(X) as

⋃
n<ω ςαn(X) where αn+1 ≡

αn;α and α0 ≡ ?> and defines δα∗(X) as
⋂
n<ω δαn(X). When playing α∗, Angel, thus,

announces to Demon how many repetitions n are going to be played when the game
α∗ begins and Demon announces how often to repeat α×. This advance notice makes
it easier for Demon to win loops α∗ and easier for Angel to win loops α×, because the
opponent announces an important feature of their strategy immediately as opposed to
revealing whether or not to repeat the game once more one iteration at a time as in
Def. 2.6. Angel announces the number n < ω of repetitions when α∗ starts.

In hybrid systems, the advance notice semantics and the least fixpoint semantics
are equivalent (Lemma 3.7), but the advance notice semantics and dGL’s least fixpoint
semantics are different for hybrid games. The following formula is valid in dGL (see
Fig. 17), but would not be valid in the advance notice semantics:

x = 1 ∧ a = 1→ 〈((x := a; a := 0) ∩ x := 0)
∗〉x 6= 1 (17)
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Fig. 17. Game trees for x = 1 ∧ a = 1 → 〈α∗〉x 6= 1 with game α ≡ (x := a; a := 0) ∩ x := 0 (notation:
x, a). (left) valid in dGL by strategy “repeat once and repeat once more if x = 1, then stop” (right) false in
advance notice semantics by the strategy “n− 1 choices of x := 0 followed by x := a; a := 0 once”, where n is
the number of repetitions Angel announced

If, in the advance notice semantics, Angel announces that she has chosen n repetitions
of the game, then Demon wins (for a 6= 0) by choosing the x := 0 option n − 1 times
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followed by one choice of x := a; a := 0 in the last repetition. This strategy would not
work in the dGL semantics, because Angel is free to decide whether to repeat α∗ after
each repetition based on the resulting state of the game.

Conversely, the dual formula would be valid in the advance notice semantics but is
not valid in dGL:

x = 1 ∧ a = 1→ [((x := a; a := 0) ∩ x := 0)
∗
]x = 1

The dGL semantics is more general, because it gives the player in charge of repeti-
tion more control as the state can be inspected before deciding on whether to repeat
again. Advance notice semantics, instead, only allows the choice of a fixed number of
repetitions. The advance notice games can be expressed easily in dGL by having the
players choose a counter c before the loop that decreases to 0 during the repetition.
The advance notice semantics can be expressed in dGL, e.g., for (17) as
x = 1 ∧ a = 1→ 〈c := 0; c := c+ 1∗; (((x := a; a := 0) ∩ x := 0); c := c− 1)

∗
; ?c = 0〉x 6= 1

B.2. ω-Strategic Semantics
Another alternative choice for the semantics would have been to allow only arbitrary
finite iterations of the strategy function for computing the winning region by using the
ω-strategic semantics, which defines ςα∗(X) as ςωα (X) =

⋃
n<ω ς

n
α(X) along with a corre-

sponding definition for δα∗(X). Like the dGL semantics, but quite unlike the advance
notice semantics, the ω-strategic semantics does not require Angel to disclose how of-
ten she is going to repeat when playing α∗. Similarly, Demon does not have to announce
how often to repeat when playing α×. Nevertheless, the semantics are different. The
ω-strategic semantics would make the following valid dGL formula invalid:

〈(x := 1;x′ = 1d ∪ x := x− 1)
∗〉 (0 ≤ x < 1) (18)

By a simple variation of the argument in the proof of Theorem 3.8, ςωα ([0, 1)) = [0,∞),
because ςnα([0, 1)) = [0, n) for all n ∈ N. Yet, this ω-level of iteration of the strategy
function for winning regions misses out on the perfectly reasonable winning strat-
egy “first choose x := 1;x′ = 1d and then always choose x := x − 1 until stopping
at 0 ≤ x < 1”. The existence of this winning strategy is only found at the level
ςω+1
α ([0, 1)) = ςα([0,∞)) = R. Even though any particular use of the winning strategy in

game play uses only some finite number of repetitions of the loop, the argument why it
will always work requires > ω many iterations of ςα(·), because Demon can change x to
an arbitrarily big value, so that ω many iterations of ςα(·) are needed to conclude that
Angel has a winning strategy for all positive values of x. There is no smaller upper
bound on the number of iterations it takes Angel to win, in particular Angel cannot
promise ω as a bound on the repetition count, which is what the ω-semantics would
require her to do. But strategies do converge after ω + 1 iterations. According to The-
orem 3.8, similar shortcomings would apply for a semantics that cuts winning region
iteration of at higher transfinite ordinals below ωHG

1 .
The dGL semantics is also more general, because, by Theorem 3.8, its closure ordinal

is ≥ωCK
1 , in contrast to the ω-semantics, which has closure ordinal ω by construction.

The same observation shows a fundamental difference between the dGL semantics and
the advance notice semantics, which has closure ordinal ≤ω.

C. PROOF OF HIGHER CLOSURE ORDINALS
This section illustrates that closure ordinals are not a simple function of the syntactic
structure, because minor syntactic variations lead to vastly different closure ordinals.

PROOF OF THEOREM 3.8. In this proof, proceed in stages of increasing difficulty.
That the closure ordinal is ≥ω · 2 has already been shown on p. 20. Now prove the
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bounds ≥ω2 and finally ≥ωω. In order to see that the closure ordinal is at least ω2

even for a single nesting layer of dual and loop, follow a similar argument using more
variables. Consider the family of formulas (for some N ∈ N) of the form

〈
(
xN := xN − 1;x′N−1 = 1d ∪ . . . ∪ x2 := x2 − 1;x′1 = 1d ∪ x1 := x1 − 1︸ ︷︷ ︸

α

)∗〉 N∧
i=1

xi < 0

The winning regions for this dGL formula stabilizes after ω · N iterations, because ω
many iterations are necessary to show that all x1 can be reduced to (−∞, 0) by choosing
the last action sufficiently often, whereas another ω many iterations are needed to
show that x2 can then be reduced to (−∞, 0) by choosing the second-to-last action
sufficiently often, increasing x1 arbitrarily under Demon’s control, which can still be
won because this adversarial increase in x1 can be compensated for by the first part of
the winning strategy. The vector space of variables (xN , . . . , x1) is used in that order.
It is easy to see that ςω(α)(−∞, 0)N =

⋃
n<ω ς

n(α)(−∞, 0)N = (−∞, 0)N−1 ×R, because
ςn+1(α)(−∞, 0) = (−∞, 0)N−1 × (−∞, n) holds for all n ∈ N, n by a simple inductive
argument:

ς1(α)(−∞, 0)N = (−∞, 0)N

ςn+1(α)(−∞, 0)N = (−∞, 0)N ∪ ςα(ςn(α)(−∞, 0)N )

= (−∞, 0)N ∪ ςα((−∞, 0)N−1 × (−∞, n− 1)) = (−∞, 0)N−1 × (−∞, n)

Inductively, ςω·(k+1)(α)(−∞, 0)N =
⋃
n<ω ς

ω·k+n(α)(−∞, 0)N = (−∞, 0)N−k−1 × Rk+1

holds, because ςω·k+n+1(α)(−∞, 0) = (−∞, 0)N−k−1 × (−∞, n)× Rk holds for all n ∈ N
by a simple inductive argument:

ςω·k+n+1(α)(−∞, 0)N = (−∞, 0)N ∪ ςα(ςω·k+n(α)(−∞, 0)N )

= (−∞, 0)N ∪ ςα((−∞, 0)N−k−1 × (−∞, n− 1)× Rk)

= (−∞, 0)N−k−1 × (−∞, n)× Rk

Consequently, ςα∗((−∞, 0)N ) = ςω·N (α)(−∞, 0)N 6= ςω·(N−1)+n(α)(−∞, 0)N , which then
makes ω · N the closure ordinal for α. Since hybrid games α of the above form can be
considered with arbitrarily big N ∈ N, the common closure ordinal has to be ≥ω ·N for
all N ∈ N, i.e. it has to be ≥ω2.

In order to see that the closure ordinal is at least ωω, follow an argument expanding
on the previous case. Consider the family of formulas (for some N ∈ N) of the form

〈
(
?xN−1<0;x′N−1=1d;xN := xN−1 ∪ . . ∪ ?x1<0;x′1=1d;x2 := x2−1 ∪ x1 := x1−1

)︸ ︷︷ ︸
α

∗〉
N∧
i=1

xi<0

The winning region for this “clockwork ω” formula stabilizes after ωN iterations, ω
many iterations are necessary to show that all x1 can be reduced to (−∞, 0) by choos-
ing the last action sufficiently often, whereas another ω many iterations are needed to
show that x2 can then be reduced to (−∞, 0) by choosing the second-to-last action suf-
ficiently often in case x1 has already been reduced to (−∞, 0). Every time the second-
to-last action is chosen, however, Demon increases x1 arbitrarily, which again takes ω
many steps of the last action to understand how x1 can again be reduced to (−∞, 0)
before the second-to-last action can be chosen again to decrease x2 further. This phe-
nomenon that ω many actions on xi−1 are needed before xi can be decreased by 1 holds
for all i recursively. Note that in any particular game play, Demon can only increase
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xi by some finite amount. But Angel does not have a finite bound on that increment,
so she will first have to convince herself that she has a winning strategy that could
tolerate any change in xi, which takes ω many iterations of the previous argument.

The vector space of variables (xN , . . . , x1) is used in that order. For bN , . . . , b1 ∈ N ∪
{∞}, use the short hand notation

bN . . . b2b1
def
= (−∞, bN )× · · · × (−∞, b2)× (−∞, b1)

and write bni for (−∞, bi)n in that context. Let ~b = (bN , . . . , b1). Then prove that
∀∀n ∈ N ∀∀j ∈ N, j > 0

ςω
j(n+1)(α)bN . . bj . . b1=bN . . (bj+1 + n)∞j if bN . . bj <∞, j > 0

ςω
j(n+1)(α)bN . . bj+1∞j=bN . . (bj+1 + n+ 1)∞j if bN . . bj+1<∞, bj=∞= . . b1

ςω
j(n+1)(α)bN . . bk+1∞k−j∞j=bN . . (bk+1+1)1k−j−1(n+1)∞j if bN . . bk+1<∞, bk=∞, k>j

∪~b

by induction on the lexicographical order of j and n. Let 1©, 2©, 3© denote the if condi-
tions on the right, respectively. Note that, in the case 3©, there are some subordinate
cases which do not need to be tracked in this analysis, because they are strategic dead
ends. IH is short for induction hypothesis.

The base case j = 0, n = 0 is vacuous for 1© and can be checked easily for 2©.

ςω
01(α)bN . . b1∞0 = ς1(α)bN . . b1 = bN . . (b1 + 1) = bN . . (b1 + 1)∞0

ςω
0(n+1)(α)bN . . b1∞0 = ~b ∪ ς (α)ςn(α)bN . . b1 = ~b ∪ ς (α)bN . . (b1 + n) = bN . . (b1 + n+ 1)

For 3©, the case j = 0 holds only after an extra offset k, however:

ς1(α)bN . . bk+1∞k = ~b ∪ bN . . (bk+1 + 1)0∞k−1

ςn+1(α)bN . . bk+1∞k = ςn(α)bN . . bk+1∞k ∪ bN . . (bk+1 + 1)1n0∞k−n−1 for n < k

ςk+n+1(α)bN . . bk+1∞k = ςk+n(α)bN . . bk+1∞k ∪ bN . . (bk+1 + 1)1k−1(n+ 1)

Instead, prove base case j = 1, n = 0, as the extra offset k has been overcome at ω:

ςω
11(α)bN . . b1 =

⋃
n<ω

ςω
0(n+1)(α)bN . . b1∞0 =

⋃
n<ω

bN . . (b1+n+1) = bN . . b2∞ if 1©

ςω
11(α)bN . . b2∞ =

⋃
n<ω

ςω
0(n+1)(α)bN . . b2∞1 = bN . . (b2+1)∞ if 2©

ςω
11(α)bN . . bk+1∞k =

⋃
n<ω

ςω
0(n+1)(α)bN . . bk+1∞k =

⋃
n<ω

bN . . (bk+1+1)1k−1(n+1) ∪~b

= bN . . (bk+1 + 1)1k−1∞∪~b if 3©

In case 3©, there are some subordinate cases ∪~b coming from mixed occurrences
bN . . (bk+1 + 1)i0∞k−i−1, but do not need to be tracked, because they are strategic dead
ends. By construction of α, no counter can be changed without resetting all smaller
variables to 0 first as indicated.
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j y j + 1, n = 0: For the step from j to j + 1 prove the case n = 0 as follows.

ςω
j+1·(0+1)(α)bN . . bj . . b1 = ςω

j ·ω(α)bN . . bj . . b1 =
⋃
n<ω

ςω
j ·(n+1)(α)bN . . bj . . b1

IH
=


⋃
n<ω bN . . (bj+1 + n)∞j if 1©⋃
n<ω bN . . (bj+1 + n+ 1)∞j if 2©⋃
n<ω bN . . (bk+1 + 1)1k−j−1(n+ 1)∞j ∪~b if 3©

IH
=


bN . . bj+2∞j+1 if bN , . . , bj <∞
bN . . bj+2∞j+1 if bN , . . , bj+1 <∞
bN . . (bj+2 + 1)∞j+1 if bN , . . , bj+2 <∞, bj+1 =∞, k = j + 1

bN . . (bk+1 + 1)1k−j−21∞j+1 ∪~b if bN , . . , bk+1 <∞, bk =∞, k > j + 1

n y n + 1: Within a level j, prove the step from n to n + 1 as follows. If n = 0, then
ςω

j(n+1)(α)bN . . bj . . b1 = ςω
j

(α)bN . . bj . . b1 already has the property by induction hy-
pothesis. Otherwise n > 0, which allows to conclude:

ςω
j(n+1)(α)bN . . bj . . b1 = ςω

jn+ωj (α)bN . . bj . . b1
Lemma 3.6

= ςω
j

(α)ςω
jn(α)bN . . bj . . b1

IH
=


ςω

j

(α)bN . . (bj+1 + n− 1)∞j if 1©
ςω

j

(α)bN . . (bj+1 + n)∞j if 2©
ςω

j

(α)bN . . (bk+1 + 1)1k−j−1n∞j ∪~b if 3©

IH
=


bN . . (bj + n)∞j if 1©
bN . . (bj + n+ 1)∞j if 2©
bN . . (bk+1 + 1)1k−j−1(n+ 1)∞j ∪~b if 3©

Consequently, ςα∗((−∞, 0)N ) = ςω
N

(α)(−∞, 0)N = RN 6= ςω
N−1·n(α)(−∞, 0)N for all n ∈

N, which makes ωN the closure ordinal for α. Since hybrid games α of the above form
can be considered with arbitrarily big N ∈ N, the common closure ordinal has to be
≥ ωN for all N ∈ N, i.e. it has to be ≥ ωω.
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